- -

Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports

Mostrar el registro completo del ítem

De La Torre, C.; Agostini, A.; Mondragón Martínez, L.; Orzaez, M.; Sancenón Galarza, F.; Martínez Mañez, R.; Marcos Martínez, MD.... (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chemical Communications. 50(24):3184-3186. https://doi.org/10.1039/c3cc49421g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47840

Ficheros en el ítem

Metadatos del ítem

Título: Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports
Autor: de la Torre, Cristina Agostini, Alessandro Mondragón Martínez, Laura Orzaez, Mar Sancenón Galarza, Félix Martínez Mañez, Ramón Marcos Martínez, María Dolores Amoros, Pedro Pérez Payá, Enrique
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Changes in the conformation of a peptide anchored onto the external surface of mesoporous silica nanoparticles have been used to design novel temperature-controlled delivery systems.
Palabras clave: Responsive Controlled-Release , Combinatorial library , Amino-acids , Nanoparticles , Chemistry , Valves
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c3cc49421g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3cc49421g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Agradecimientos:
Financial support from the Spanish Government (Project MAT2012-38429-C04) and the Generalitat Valencia (Project PROMETEO/2009/016) is gratefully acknowledged. C. T. is grateful to the Spanish Ministry of Science and ...[+]
Tipo: Artículo

References

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224a [+]
Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224a

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751

Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362

Angelos, S., Khashab, N. M., Yang, Y.-W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 131(36), 12912-12914. doi:10.1021/ja9010157

Saha, S., Leung, K. C.-F., Nguyen, T. D., Stoddart, J. F., & Zink, J. I. (2007). Nanovalves. Advanced Functional Materials, 17(5), 685-693. doi:10.1002/adfm.200600989

Zhou, Y., Guo, W., Cheng, J., Liu, Y., Li, J., & Jiang, L. (2012). High-Temperature Gating of Solid-State Nanopores with Thermo-Responsive Macromolecular Nanoactuators in Ionic Liquids. Advanced Materials, 24(7), 962-967. doi:10.1002/adma.201104814

Chen, M., Huang, C., He, C., Zhu, W., Xu, Y., & Lu, Y. (2012). A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications, 48(76), 9522. doi:10.1039/c2cc34290a

Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J., & Jung, J. H. (2011). Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 21(22), 7882. doi:10.1039/c1jm11334h

Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 51(50), 12486-12489. doi:10.1002/anie.201206416

Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133

Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165

You, Y.-Z., Kalebaila, K. K., Brock, S. L., & Oupický, D. (2008). Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles. Chemistry of Materials, 20(10), 3354-3359. doi:10.1021/cm703363w

Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756

Yan, H., Teh, C., Sreejith, S., Zhu, L., Kwok, A., Fang, W., … Zhao, Y. (2012). Functional Mesoporous Silica Nanoparticles for Photothermal-Controlled Drug Delivery In Vivo. Angewandte Chemie International Edition, 51(33), 8373-8377. doi:10.1002/anie.201203993

Li, N., Yu, Z., Pan, W., Han, Y., Zhang, T., & Tang, B. (2012). A Near-Infrared Light-Triggered Nanocarrier with Reversible DNA Valves for Intracellular Controlled Release. Advanced Functional Materials, 23(18), 2255-2262. doi:10.1002/adfm.201202564

Yang, X., Liu, X., Liu, Z., Pu, F., Ren, J., & Qu, X. (2012). Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles. Advanced Materials, 24(21), 2890-2895. doi:10.1002/adma.201104797

Ma, X., Ong, O. S., & Zhao, Y. (2013). Dual-responsive drug release from oligonucleotide-capped mesoporous silica nanoparticles. Biomaterials Science, 1(9), 912. doi:10.1039/c3bm60090d

Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827

Martelli, G., Zope, H. R., Bròvia Capell, M., & Kros, A. (2013). Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles. Chemical Communications, 49(85), 9932. doi:10.1039/c3cc45790g

Mas, V., Perez-Paya, E., Estepa, A., Gonzalez Ros, J. M., Pérez, L., Rocha, A., … Encinar, J. A. (2002). Salmonid viral haemorrhagic septicaemia virus: fusion-related enhancement of virus infectivity by peptides derived from viral glycoprotein G or a combinatorial library. Journal of General Virology, 83(11), 2671-2681. doi:10.1099/0022-1317-83-11-2671

BLANES-MIRA, C., PASTOR, M. T., VALERA, E., FERNÁNDEZ-BALLESTER, G., MERINO, J. M., GUTIERREZ, L. M., … FERRER-MONTIEL, A. (2003). Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochemical Journal, 375(1), 159-166. doi:10.1042/bj20030509

Rohl, C. A., Chakrabartty, A., & Baldwin, R. L. (1996). Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Science, 5(12), 2623-2637. doi:10.1002/pro.5560051225

Esteve, V., Blondelle, S., Celda, B., & P�rez-Pay�, E. (2001). Stabilization of an ?-helical conformation in an isolated hexapeptide inhibitor of calmodulin. Biopolymers, 59(7), 467-476. doi:10.1002/1097-0282(200112)59:7<467::aid-bip1052>3.0.co;2-5

Marqusee, S., & Baldwin, R. L. (1987). Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proceedings of the National Academy of Sciences, 84(24), 8898-8902. doi:10.1073/pnas.84.24.8898

O’Neil, K., & DeGrado, W. (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science, 250(4981), 646-651. doi:10.1126/science.2237415

Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., & Kallenbach, N. R. (1991). The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolymers, 31(13), 1605-1614. doi:10.1002/bip.360311315

Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5

Gao, J., Zhang, X., Xu, S., Tan, F., Li, X., Zhang, Y., … Liu, J. (2013). Clickable Periodic Mesoporous Organosilicas: Synthesis, Click Reactions, and Adsorption of Antibiotics. Chemistry - A European Journal, 20(7), 1957-1963. doi:10.1002/chem.201303778

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem