- -

Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vercher Martínez, Ana es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.contributor.author Arango Villegas, Camila es_ES
dc.contributor.author Tarancón Caro, José Enrique es_ES
dc.contributor.author Fuenmayor Fernández, Francisco Javier es_ES
dc.date.accessioned 2015-03-10T09:29:30Z
dc.date.available 2015-03-10T09:29:30Z
dc.date.issued 2014-04
dc.identifier.issn 1617-7959
dc.identifier.uri http://hdl.handle.net/10251/47906
dc.description.abstract Mineralized collagen fibrils have been usually analyzed like a two phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that, when Halpin-Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations and a new finite lement model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement. es_ES
dc.description.sponsorship The authors acknowledge the Ministerio de Economia y Competitividad the financial support given through the project DPI2010-20990 and the Generalitat Valenciana through the Programme Prometeo 2012/023. The authors thank Ms. Carla Gonzalez Carrillo by her help in the development of some of the numerical models. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Biomechanics and Modeling in Mechanobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mineralized collagen fibril es_ES
dc.subject Lamellar bone es_ES
dc.subject Cortical bone es_ES
dc.subject Finite elements es_ES
dc.subject Periodic boundary conditions es_ES
dc.subject Homogenized stiffness matrix es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10237-013-0507-y
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles es_ES
dc.description.bibliographicCitation Vercher Martínez, A.; Giner Maravilla, E.; Arango Villegas, C.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2014). Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomechanics and Modeling in Mechanobiology. 13(2):1-21. https://doi.org/10.1007/s10237-013-0507-y es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 245831
dc.identifier.eissn 1617-7940
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509 es_ES
dc.description.references Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386 es_ES
dc.description.references Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–392 es_ES
dc.description.references Ashman RB, Cowin SC, van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–361 es_ES
dc.description.references Bar-On B, Wagner HD (2012) Elastic modulus of hard tissues. J Biomech 45:672–678 es_ES
dc.description.references Bondfield W, Li CH (1967) Anisotropy of nonelastic flow in bone. J Appl Phys 38:2450–2455 es_ES
dc.description.references Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press Boca Raton, Florida es_ES
dc.description.references Cowin SC, van Buskirk WC (1986) Thermodynamic restrictions on the elastic constant of bone. J Biomech 19:85–86 es_ES
dc.description.references Currey JD (1962) Strength of bone. Nature 195:513 es_ES
dc.description.references Cusack S, Miller A (1979) Determination of the elastic constants of collagen by brillouin light scattering. J Mol Biol 135:39–51 es_ES
dc.description.references Doty S, Robinson RA, Schofield B (1976) Morphology of bone and histochemical staining characteristics of bone cells. In: Aurbach GD (ed) Handbook of physiology. American Physiology Soc, Washington, pp 3–23 es_ES
dc.description.references Erts D, Gathercole LJ, Atkins EDT (1994) Scanning probe microscopy of crystallites in calcified collagen. J Mater Sci Mater Med 5:200–206 es_ES
dc.description.references Faingold A, Sidney RC, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Biomech Materials 9:198–206 es_ES
dc.description.references Franzoso G, Zysset PK (2009) Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomech Eng 131:021001 es_ES
dc.description.references Gebhardt W (1906) Über funktionell wichtige Anordnungsweisen der eineren und grösseren Bauelemente des Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entwickl Mech Org 20:187–322 es_ES
dc.description.references Gibson RF (1994) Principles of composite material mechanics. McGraw-Hill, New York es_ES
dc.description.references Giraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180 es_ES
dc.description.references Gurtin ME (1972) The linear theory of elasticity. Handbuch der Physik VIa/ 2:1–296 es_ES
dc.description.references Halpin JC (1992) Primer on composite materials: analysis, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, Florida es_ES
dc.description.references Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hanma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10 es_ES
dc.description.references Hohe J (2003) A direct homogenization approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels. Composites Part B 34:615–626 es_ES
dc.description.references Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order, and disorder in collagen fibrils. Biophys J 68:1661–1670 es_ES
dc.description.references Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746 es_ES
dc.description.references Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phy Sol 52:1963–1990 es_ES
dc.description.references Landis WJ, Hodgens KJ, Aerna J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202 es_ES
dc.description.references Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day, San Francisco es_ES
dc.description.references Lempriere BM (1968) Poisson’s ratio in orthotropic materials. Am Inst Aeronaut Astronaut J J6:2226–2227 es_ES
dc.description.references Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University, New York es_ES
dc.description.references Lusis J, Woodhams RT, Xhantos M (1973) The effect of flake aspect ratio on flexural properties of mica reinforced plastics. Polym Eng Sci 13:139–145 es_ES
dc.description.references Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10:309–322 es_ES
dc.description.references Orgel JPRO, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ (2001) The in situ supermolecular structure of type I collagen. Structure 9:1061–1069 es_ES
dc.description.references Padawer GE, Beecher N (1970) On the strength and stiffness of planar reinforced plastic resins. Polym Eng Sci 10:185–192 es_ES
dc.description.references Pahr DH, Rammerstofer FG (2006) Buckling of honeycomb sandwiches: periodic finite element considerations. Comput Model Eng Sci 12:229–242 es_ES
dc.description.references Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9:499–510 es_ES
dc.description.references Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10:67–77 es_ES
dc.description.references Rezkinov N, Almany-Magal R, Shahar R, Weiner S (2013) Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 52(2):676–683 es_ES
dc.description.references Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102 es_ES
dc.description.references Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282 es_ES
dc.description.references Suquet P (1987) Lecture notes in physics-homogenization techniques for composite media. Chapter IV. Springer, Berlin es_ES
dc.description.references Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5 es_ES
dc.description.references Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25:1311–1320 es_ES
dc.description.references Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298 es_ES
dc.description.references Weiner S, Traub W, Wagner H (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255 es_ES
dc.description.references Yao H, Ouyang L, Ching W (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram 90:3194–3204 es_ES
dc.description.references Yoon YJ, Cowin SC (2008b) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7:1–11 es_ES
dc.description.references Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160 es_ES
dc.description.references Zhang Z, Zhang YWF, Gao H (2010) On optimal hierarchy of load-bearing biological materials. Proc R Soc B 278:519–525 es_ES
dc.description.references Zuo S, Wei Y (2007) Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica 20:198–205 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem