- -

Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models

Mostrar el registro completo del ítem

Vercher Martínez, A.; Giner Maravilla, E.; Arango Villegas, C.; Tarancón Caro, JE.; Fuenmayor Fernández, FJ. (2014). Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomechanics and Modeling in Mechanobiology. 13(2):1-21. https://doi.org/10.1007/s10237-013-0507-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47906

Ficheros en el ítem

Metadatos del ítem

Título: Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models
Autor: Vercher Martínez, Ana Giner Maravilla, Eugenio Arango Villegas, Camila Tarancón Caro, José Enrique Fuenmayor Fernández, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles
Fecha difusión:
Resumen:
Mineralized collagen fibrils have been usually analyzed like a two phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe ...[+]
Palabras clave: Mineralized collagen fibril , Lamellar bone , Cortical bone , Finite elements , Periodic boundary conditions , Homogenized stiffness matrix
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomechanics and Modeling in Mechanobiology. (issn: 1617-7959 ) (eissn: 1617-7940 )
DOI: 10.1007/s10237-013-0507-y
Editorial:
Springer Verlag (Germany)
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20990/ES/APLICACION DEL METODO DE ELEMENTOS FINITOS EXTENDIDO Y MODELOS DE ZONA COHESIVA AL MODELADO MICROESTRUCTURAL DEL DAÑO EN HUESO CORTICAL/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/
Agradecimientos:
The authors acknowledge the Ministerio de Economia y Competitividad the financial support given through the project DPI2010-20990 and the Generalitat Valenciana through the Programme Prometeo 2012/023. The authors thank ...[+]
Tipo: Artículo

References

Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509

Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386

Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–392 [+]
Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509

Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386

Ascenzi A, Bonucci E (1968) The compressive properties of single osteons. Anat Rec 161:377–392

Ashman RB, Cowin SC, van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–361

Bar-On B, Wagner HD (2012) Elastic modulus of hard tissues. J Biomech 45:672–678

Bondfield W, Li CH (1967) Anisotropy of nonelastic flow in bone. J Appl Phys 38:2450–2455

Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press Boca Raton, Florida

Cowin SC, van Buskirk WC (1986) Thermodynamic restrictions on the elastic constant of bone. J Biomech 19:85–86

Currey JD (1962) Strength of bone. Nature 195:513

Cusack S, Miller A (1979) Determination of the elastic constants of collagen by brillouin light scattering. J Mol Biol 135:39–51

Doty S, Robinson RA, Schofield B (1976) Morphology of bone and histochemical staining characteristics of bone cells. In: Aurbach GD (ed) Handbook of physiology. American Physiology Soc, Washington, pp 3–23

Erts D, Gathercole LJ, Atkins EDT (1994) Scanning probe microscopy of crystallites in calcified collagen. J Mater Sci Mater Med 5:200–206

Faingold A, Sidney RC, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Biomech Materials 9:198–206

Franzoso G, Zysset PK (2009) Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. J Biomech Eng 131:021001

Gebhardt W (1906) Über funktionell wichtige Anordnungsweisen der eineren und grösseren Bauelemente des Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entwickl Mech Org 20:187–322

Gibson RF (1994) Principles of composite material mechanics. McGraw-Hill, New York

Giraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180

Gurtin ME (1972) The linear theory of elasticity. Handbuch der Physik VIa/ 2:1–296

Halpin JC (1992) Primer on composite materials: analysis, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, Florida

Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hanma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35:4–10

Hohe J (2003) A direct homogenization approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels. Composites Part B 34:615–626

Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order, and disorder in collagen fibrils. Biophys J 68:1661–1670

Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phy Sol 52:1963–1990

Landis WJ, Hodgens KJ, Aerna J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202

Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day, San Francisco

Lempriere BM (1968) Poisson’s ratio in orthotropic materials. Am Inst Aeronaut Astronaut J J6:2226–2227

Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University, New York

Lusis J, Woodhams RT, Xhantos M (1973) The effect of flake aspect ratio on flexural properties of mica reinforced plastics. Polym Eng Sci 13:139–145

Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10:309–322

Orgel JPRO, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ (2001) The in situ supermolecular structure of type I collagen. Structure 9:1061–1069

Padawer GE, Beecher N (1970) On the strength and stiffness of planar reinforced plastic resins. Polym Eng Sci 10:185–192

Pahr DH, Rammerstofer FG (2006) Buckling of honeycomb sandwiches: periodic finite element considerations. Comput Model Eng Sci 12:229–242

Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9:499–510

Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10:67–77

Rezkinov N, Almany-Magal R, Shahar R, Weiner S (2013) Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 52(2):676–683

Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

Suquet P (1987) Lecture notes in physics-homogenization techniques for composite media. Chapter IV. Springer, Berlin

Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5

Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25:1311–1320

Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

Weiner S, Traub W, Wagner H (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

Yao H, Ouyang L, Ching W (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram 90:3194–3204

Yoon YJ, Cowin SC (2008b) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7:1–11

Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160

Zhang Z, Zhang YWF, Gao H (2010) On optimal hierarchy of load-bearing biological materials. Proc R Soc B 278:519–525

Zuo S, Wei Y (2007) Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica 20:198–205

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem