- -

Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Segura, A. es_ES
dc.contributor.author Panchal, V. es_ES
dc.contributor.author Sánchez-Royo, J. F. es_ES
dc.contributor.author Marín-Borrás, V. es_ES
dc.contributor.author Muñoz-Sanjosé, V. es_ES
dc.contributor.author Rodríguez-Hernández, P. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.contributor.author Pérez-González, E. es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author González, J. es_ES
dc.date.accessioned 2015-03-20T10:14:53Z
dc.date.available 2015-03-20T10:14:53Z
dc.date.issued 2012-05-24
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/48141
dc.description.abstract [EN] This paper reports an experimental and theoretical investigation on the electronic structure of bismuth selenide (Bi2Se3) up to 9 GPa. The optical gap of Bi2Se3 increases from 0.17 eV at ambient pressure to 0.45 eV at 8 GPa. The quenching of the Burstein-Moss effect in degenerate samples and the shift of the free-carrier plasma frequency to lower energies reveal a quick decrease of the bulk three-dimensional (3D) electron concentration under pressure. On increasing pressure the behavior of Hall electron concentration and mobility depends on the sample thickness, consistently with a gradual transition from mainly 3D transport at ambient pressure to mainly two-dimensional (2D) transport at high pressure. Two-carrier transport equations confirm the trapping of high-mobility 3D electrons, an effect that can be related to a shallow-to-deep transformation of donor levels, associated with a change in the ordering of the conduction band minima. The high apparent areal density and low electron mobility of 2D electrons are not compatible with their expected properties in a Dirac cone. Measured transport parameters at high pressure are most probably affected by the presence of holes, either in an accumulation surface layer or as minority carriers in the bulk. ©2012 American Physical Society es_ES
dc.description.sponsorship This work has been done under financial support from Spanish MICINN under Grants No. MAT2008-06873-C02-02, No. MAT2007-66129, No. MAT2010-21270-C04-03/04, No. CSD2007-00045, and Prometeo No. GV2011/035. The supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster.
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Initio molecular-dynamics es_ES
dc.subject Conduction-band structure es_ES
dc.subject Total-Energy calculations es_ES
dc.subject Augmented-wave method es_ES
dc.subject Diamond-anvil cell es_ES
dc.subject Single dirac cone es_ES
dc.subject Bismuth selenide es_ES
dc.subject Basis-set es_ES
dc.subject Surface es_ES
dc.subject Semiconductors es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.85.195139
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-06873-C02-02/ES/SEMICONDUCTORES MAGNETICOS DE GAP ANCHO (ZNM)O (M:CO,MN,FE) Y SUS FASES DE ALTA PRESION. DEPOSICION E CAPA DELGADA Y PROPIEDADES ESTRUCTURALES Y MAGNETO-OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2011%2F035/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-66129/ES/OXIDOS SEMICONDUCTORES II-VI PARA LA OPTOELECTRONICA UV Y LA ESPINTRONICA/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Segura, A.; Panchal, V.; Sánchez-Royo, JF.; Marín-Borrás, V.; Muñoz-Sanjosé, V.; Rodríguez-Hernández, P.; Muñoz, A.... (2012). Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3 under high pressure. Physical Review B. 85:195139-1-195139-9. https://doi.org/10.1103/PhysRevB.85.195139 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.85.195139 es_ES
dc.description.upvformatpinicio 195139-1 es_ES
dc.description.upvformatpfin 195139-9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.relation.senia 230157
dc.identifier.eissn 1550-235X
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Mishra, S. K., Satpathy, S., & Jepsen, O. (1997). Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter, 9(2), 461-470. doi:10.1088/0953-8984/9/2/014 es_ES
dc.description.references Hor, Y. S., Richardella, A., Roushan, P., Xia, Y., Checkelsky, J. G., Yazdani, A., … Cava, R. J. (2009). p-typeBi2Se3for topological insulator and low-temperature thermoelectric applications. Physical Review B, 79(19). doi:10.1103/physrevb.79.195208 es_ES
dc.description.references Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270 es_ES
dc.description.references Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. doi:10.1103/revmodphys.82.3045 es_ES
dc.description.references Moore, J. E. (2010). The birth of topological insulators. Nature, 464(7286), 194-198. doi:10.1038/nature08916 es_ES
dc.description.references Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274 es_ES
dc.description.references Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science, 325(5937), 178-181. doi:10.1126/science.1173034 es_ES
dc.description.references Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234 es_ES
dc.description.references Alpichshev, Z., Analytis, J. G., Chu, J.-H., Fisher, I. R., Chen, Y. L., Shen, Z. X., … Kapitulnik, A. (2010). STM Imaging of Electronic Waves on the Surface ofBi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects. Physical Review Letters, 104(1). doi:10.1103/physrevlett.104.016401 es_ES
dc.description.references Roushan, P., Seo, J., Parker, C. V., Hor, Y. S., Hsieh, D., Qian, D., … Yazdani, A. (2009). Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259), 1106-1109. doi:10.1038/nature08308 es_ES
dc.description.references Butch, N. P., Kirshenbaum, K., Syers, P., Sushkov, A. B., Jenkins, G. S., Drew, H. D., & Paglione, J. (2010). Strong surface scattering in ultrahigh-mobilityBi2Se3topological insulator crystals. Physical Review B, 81(24). doi:10.1103/physrevb.81.241301 es_ES
dc.description.references Wang, Z., Lin, T., Wei, P., Liu, X., Dumas, R., Liu, K., & Shi, J. (2010). Tuning carrier type and density in Bi2Se3 by Ca-doping. Applied Physics Letters, 97(4), 042112. doi:10.1063/1.3473778 es_ES
dc.description.references Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K., & Ando, Y. (2010). Large bulk resistivity and surface quantum oscillations in the topological insulatorBi2Te2Se. Physical Review B, 82(24). doi:10.1103/physrevb.82.241306 es_ES
dc.description.references Kulbachinskii, V. A., Miura, N., Nakagawa, H., Arimoto, H., Ikaida, T., Lostak, P., & Drasar, C. (1999). Conduction-band structure ofBi2−xSbxSe3mixed crystals by Shubnikov–de Haas and cyclotron resonance measurements in high magnetic fields. Physical Review B, 59(24), 15733-15739. doi:10.1103/physrevb.59.15733 es_ES
dc.description.references Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960-964. doi:10.1038/nphys1861 es_ES
dc.description.references Cho, S., Butch, N. P., Paglione, J., & Fuhrer, M. S. (2011). Insulating Behavior in Ultrathin Bismuth Selenide Field Effect Transistors. Nano Letters, 11(5), 1925-1927. doi:10.1021/nl200017f es_ES
dc.description.references Zhang, Y., He, K., Chang, C.-Z., Song, C.-L., Wang, L.-L., Chen, X., … Xue, Q.-K. (2010). Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Physics, 6(8), 584-588. doi:10.1038/nphys1689 es_ES
dc.description.references Kong, D., Cha, J. J., Lai, K., Peng, H., Analytis, J. G., Meister, S., … Cui, Y. (2011). Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano, 5(6), 4698-4703. doi:10.1021/nn200556h es_ES
dc.description.references Benia, H. M., Lin, C., Kern, K., & Ast, C. R. (2011). Reactive Chemical Doping of theBi2Se3Topological Insulator. Physical Review Letters, 107(17). doi:10.1103/physrevlett.107.177602 es_ES
dc.description.references King, P. D. C., Hatch, R. C., Bianchi, M., Ovsyannikov, R., Lupulescu, C., Landolt, G., … Hofmann, P. (2011). Large Tunable Rashba Spin Splitting of a Two-Dimensional Electron Gas inBi2Se3. Physical Review Letters, 107(9). doi:10.1103/physrevlett.107.096802 es_ES
dc.description.references Hamlin, J. J., Jeffries, J. R., Butch, N. P., Syers, P., Zocco, D. A., Weir, S. T., … Maple, M. B. (2011). High pressure transport properties of the topological insulator Bi2Se3. Journal of Physics: Condensed Matter, 24(3), 035602. doi:10.1088/0953-8984/24/3/035602 es_ES
dc.description.references Köhler, H., & Hartmann, J. (1974). Burstein Shift of the Absorption Edge of nBi2Se3. physica status solidi (b), 63(1), 171-176. doi:10.1002/pssb.2220630116 es_ES
dc.description.references Panchal, V., Segura, A., & Pellicer-Porres, J. (2011). Low-cost set-up for Fourier-transform infrared spectroscopy in diamond anvil cell from 4000 to 400 cm−1. High Pressure Research, 31(3), 445-453. doi:10.1080/08957959.2011.594049 es_ES
dc.description.references Chervin, J. C., Canny, B., Besson, J. M., & Pruzan, P. (1995). A diamond anvil cell for IR microspectroscopy. Review of Scientific Instruments, 66(3), 2595-2598. doi:10.1063/1.1145594 es_ES
dc.description.references Piermarini, G. J., Block, S., Barnett, J. D., & Forman, R. A. (1975). Calibration of the pressure dependence of theR1ruby fluorescence line to 195 kbar. Journal of Applied Physics, 46(6), 2774-2780. doi:10.1063/1.321957 es_ES
dc.description.references Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203 es_ES
dc.description.references Errandonea, D., Martínez-García, D., Segura, A., Ruiz-Fuertes, J., Lacomba-Perales, R., Fages, V., … Mũnoz-San José, V. (2006). High-pressure electrical transport measurements on p-type GaSe and InSe. High Pressure Research, 26(4), 513-516. doi:10.1080/08957950601101787 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Köhler, H., & Becker, C. R. (1974). Optically Active Lattice Vibrations in Bi2Se3. physica status solidi (b), 61(2), 533-537. doi:10.1002/pssb.2220610218 es_ES
dc.description.references Vilaplana, R., Santamaría-Pérez, D., Gomis, O., Manjón, F. J., González, J., Segura, A., … Kucek, V. (2011). Structural and vibrational study of Bi2Se3under high pressure. Physical Review B, 84(18). doi:10.1103/physrevb.84.184110 es_ES
dc.description.references LaForge, A. D., Frenzel, A., Pursley, B. C., Lin, T., Liu, X., Shi, J., & Basov, D. N. (2010). Optical characterization ofBi2Se3in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B, 81(12). doi:10.1103/physrevb.81.125120 es_ES
dc.description.references Penn, D. R. (1962). Wave-Number-Dependent Dielectric Function of Semiconductors. Physical Review, 128(5), 2093-2097. doi:10.1103/physrev.128.2093 es_ES
dc.description.references PHILLIPS, J. C. (1970). Ionicity of the Chemical Bond in Crystals. Reviews of Modern Physics, 42(3), 317-356. doi:10.1103/revmodphys.42.317 es_ES
dc.description.references Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant. Physical Review, 182(3), 891-905. doi:10.1103/physrev.182.891 es_ES
dc.description.references Van Vechten, J. A. (1969). Quantum Dielectric Theory of Electronegativity in Covalent Systems. II. Ionization Potentials and Interband Transition Energies. Physical Review, 187(3), 1007-1020. doi:10.1103/physrev.187.1007 es_ES
dc.description.references Larson, P., Greanya, V. A., Tonjes, W. C., Liu, R., Mahanti, S. D., & Olson, C. G. (2002). Electronic structure ofBi2X3(X=S,Se,T)compounds:  Comparison of theoretical calculations with photoemission studies. Physical Review B, 65(8). doi:10.1103/physrevb.65.085108 es_ES
dc.description.references Chang, J., Jadaun, P., Register, L. F., Banerjee, S. K., & Sahu, B. (2011). Dielectric capping effects on binary and ternary topological insulator surface states. Physical Review B, 84(15). doi:10.1103/physrevb.84.155105 es_ES
dc.description.references Suski, T., Piotrzkowski, R., Wiśniewski, P., Litwin-Staszewska, E., & Dmowski, L. (1989). High pressure andDXcenters in heavily doped bulk GaAs. Physical Review B, 40(6), 4012-4021. doi:10.1103/physrevb.40.4012 es_ES
dc.description.references Errandonea, D., Segura, A., Sánchez-Royo, J. F., Mun-|Atoz, V., Grima, P., Chevy, A., & Ulrich, C. (1997). Investigation of conduction-band structure, electron-scattering mechanisms, and phase transitions in indium selenide by means of transport measurements under pressure. Physical Review B, 55(24), 16217-16225. doi:10.1103/physrevb.55.16217 es_ES
dc.description.references Analytis, J. G., Chu, J.-H., Chen, Y., Corredor, F., McDonald, R. D., Shen, Z. X., & Fisher, I. R. (2010). Bulk Fermi surface coexistence with Dirac surface state inBi2Se3: A comparison of photoemission and Shubnikov–de Haas measurements. Physical Review B, 81(20). doi:10.1103/physrevb.81.205407 es_ES
dc.description.references Köhler, H., & Fabbicius, A. (1975). Galvanomagnetic Properties of Bi2Se3with Free Carrier Densities below 5 × 1017 cm−3. physica status solidi (b), 71(2), 487-496. doi:10.1002/pssb.2220710209 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem