- -

Fixed point results for generalized cyclic contraction mappings in partial metric spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fixed point results for generalized cyclic contraction mappings in partial metric spaces

Show full item record

Abbas, M.; Nazir, T.; Romaguera Bonilla, S. (2012). Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 106(2):287-297. https://doi.org/10.1007/s13398-011-0051-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48226

Files in this item

Item Metadata

Title: Fixed point results for generalized cyclic contraction mappings in partial metric spaces
Author: Abbas, Mujahid Nazir, T. Romaguera Bonilla, Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
Rus (Approx. Convexity 3:171–178, 2005) introduced the concept of cyclic contraction mapping. P˘acurar and Rus (Nonlinear Anal. 72:1181–1187, 2010) proved some fixed point results for cyclic φ-contraction mappings on a ...[+]
Subjects: 54H25 , 47H10 , Partial metric space , Fixed point , Cyclic contraction
Copyrigths: Reserva de todos los derechos
Source:
Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. (issn: 1578-7303 )
DOI: 10.1007/s13398-011-0051-5
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s13398-011-0051-5
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/
Thanks:
S. Romaguera acknowledges the support of the Ministry of Science and Innovation of Spain, grant MTM2009-12872-C02-01.
Type: Artículo

References

Abdeljawad T., Karapinar E., Tas K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011). doi: 10.1016/j.aml.2011.5.014

Altun, I., Erduran A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. article ID 508730 (2011). doi: 10.1155/2011/508730

Altun I., Sadarangani K.: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010), 2778–2785]. Topol. Appl. 158, 1738–1740 (2011) [+]
Abdeljawad T., Karapinar E., Tas K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011). doi: 10.1016/j.aml.2011.5.014

Altun, I., Erduran A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. article ID 508730 (2011). doi: 10.1155/2011/508730

Altun I., Sadarangani K.: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010), 2778–2785]. Topol. Appl. 158, 1738–1740 (2011)

Altun I., Simsek H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1–8 (2008)

Altun I., Sola F., Simsek H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010)

Aydi, H.: Some fixed point results in ordered partial metric spaces. arxiv:1103.3680v1 [math.GN](2011)

Boyd D.W., Wong J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

Bukatin M., Kopperman R., Matthews S., Pajoohesh H.: Partial metric spaces. Am. Math. Monthly 116, 708–718 (2009)

Bukatin M.A., Shorina S.Yu. et al.: Partial metrics and co-continuous valuations. In: Nivat, M. (eds) Foundations of software science and computation structure Lecture notes in computer science vol 1378., pp. 125–139. Springer, Berlin (1998)

Derafshpour M., Rezapour S., Shahzad N.: On the existence of best proximity points of cyclic contractions. Adv. Dyn. Syst. Appl. 6, 33–40 (2011)

Heckmann R.: Approximation of metric spaces by partial metric spaces. Appl. Cat. Struct. 7, 71–83 (1999)

Karapinar E.: Fixed point theory for cyclic weak $${\phi}$$ -contraction. App. Math. Lett. 24, 822–825 (2011)

Karapinar, E.: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011,4 (2011). doi: 10.1186/1687-1812-2011-4

Karapinar E.: Weak $${\varphi}$$ -contraction on partial metric spaces and existence of fixed points in partially ordered sets. Math. Aeterna. 1(4), 237–244 (2011)

Karapinar E., Erhan I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894–1899 (2011)

Karpagam S., Agrawal S.: Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Anal. 74, 1040–1046 (2011)

Kirk W.A., Srinavasan P.S., Veeramani P.: Fixed points for mapping satisfying cylical contractive conditions. Fixed Point Theory. 4, 79–89 (2003)

Kosuru, G.S.R., Veeramani, P.: Cyclic contractions and best proximity pair theorems). arXiv:1012.1434v2 [math.FA] 29 May (2011)

Matthews S.G.: Partial metric topology. in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994)

Neammanee K., Kaewkhao A.: Fixed points and best proximity points for multi-valued mapping satisfying cyclical condition. Int. J. Math. Sci. Appl. 1, 9 (2011)

Oltra S., Valero O.: Banach’s fixed theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste. 36, 17–26 (2004)

Păcurar M., Rus I.A.: Fixed point theory for cyclic $${\phi}$$ -contractions. Nonlinear Anal. 72, 1181–1187 (2010)

Petric M.A.: Best proximity point theorems for weak cyclic Kannan contractions. Filomat. 25, 145–154 (2011)

Romaguera, S.: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. (2010, article ID 493298, 6 pages).

Romaguera, S.: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. (2011). doi: 10.1016/j.topol.2011.08.026

Romaguera S., Valero O.: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 19, 541–563 (2009)

Rus, I.A.: Cyclic representations and fixed points. Annals of the Tiberiu Popoviciu Seminar of Functional equations. Approx. Convexity 3, 171–178 (2005), ISSN 1584-4536

Schellekens M.P.: The correspondence between partial metrics and semivaluations. Theoret. Comput. Sci. 315, 135–149 (2004)

Valero O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Top. 6, 229–240 (2005)

Waszkiewicz P.: Quantitative continuous domains. Appl. Cat. Struct. 11, 41–67 (2003)

[-]

This item appears in the following Collection(s)

Show full item record