- -

Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno Flores, Joaquín es_ES
dc.contributor.author Saiz Martinez, Andrés es_ES
dc.date.accessioned 2015-04-28T07:31:57Z
dc.date.available 2015-04-28T07:31:57Z
dc.date.issued 2011
dc.identifier.issn 1017-1398
dc.identifier.uri http://hdl.handle.net/10251/49340
dc.description.abstract In this paper we present a new algorithm for solving polynomial equations based on the Taylor series of the inverse function of a polynomial, fP(y). The foundations of the computing of such series have been previously developed by the authors in some recent papers, proceeding as follows: given a polynomial function y = P(x) = a0 + a1x +···+ amxm, with ai ∈ R, 0 ≤ i ≤ m, and a real number u so that P (u) = 0, we have got an analytic function fP(y) that satisfies x = fP(P(x)) around x = u. Besides, we also introduce a new proof (completely different) of the theorems involves in the construction of fP(y), which provide a better radius of convergence of its Taylor series, and a more general perspective that could allow its application to other kinds of equations, not only polynomials. Finally, we illustrate with some examples how fP(y) could be used for solving polynomial systems. This question has been already treated by the authors in preceding works in a very complex and hard way, that we want to overcome by using the introduced algorithm in this paper. es_ES
dc.language Español es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Newton’s method es_ES
dc.subject Quasi-Newton methods es_ES
dc.subject Inverse function of polynomials es_ES
dc.subject Polynomial zeros es_ES
dc.subject Polynomial systems zeros es_ES
dc.subject Algorithms es_ES
dc.subject Nonlinear equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-011-9453-x
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Moreno Flores, J.; Saiz Martinez, A. (2011). Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems. Numerical Algorithms. 58(2):203-233. doi:10.1007/s11075-011-9453-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11075-011-9453-x es_ES
dc.description.upvformatpinicio 203 es_ES
dc.description.upvformatpfin 233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 41424
dc.description.references Pérez, R., Rocha, V.L.: Recent applications and numerical implementation of quasi-Newton methods for solving nonlinear systems of equations. Numer. Algorithms 35, 261–285 (2004) es_ES
dc.description.references Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997) es_ES
dc.description.references Pan, V.Y.: On approximating polynomial zeros: modified quad tree (Weyl’s) construction and improved Newton’s iteration. Research Report 2894, INRIA, Sophia-Antipolis, France (1996) es_ES
dc.description.references Pan, V.Y.: Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput. Math. Appl. 31, 97–138 (1996) es_ES
dc.description.references Mcnamee, J.M.: A bibliography on roots of polynomials. J. Comput. Appl. Math. 47, 391–394 (1993) es_ES
dc.description.references Pan, V.Y.: Fast and efficient parallel evaluation of the zeros of a polynomial having only real zeros. Comput. and Math. 17, 1475–1480 (1989) es_ES
dc.description.references Davidon, W.C.: Variable metric methods for min imitation. Research and Development Report ANL-5990 Rev (1959) es_ES
dc.description.references Broyden, C.G., Luss, D.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965) es_ES
dc.description.references Ortega, J.M., Reinboldt, W.C.: Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York (1970) es_ES
dc.description.references Dennid, J.E., More, J.J.: Quasi-Newton methods, motivations and theory. SIAM Rev. 19, 46–89 (1977) es_ES
dc.description.references Martínez, J.M.: Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97–121 (2000) es_ES
dc.description.references Zhang, J.Z., Chen, L.H., Deng, N.Y.: A family scaled factorized Broyden-like methods for nonlinear least squares problems. SIAM J. Optm. 10(4), 1163–1179 (2000) es_ES
dc.description.references Brezinski, C.: Classification of quasi-Newton methods. Numer. Algorithms 33, 123–135 (2003) es_ES
dc.description.references Eriksson, J., Gulliksson, M.E.: Local results for the Gauss-Nreyon method on constrained rank-deficient nonlinear least squares. Math. Comput.73(248), 1865–1883 (2003) es_ES
dc.description.references Birgin, E.G., Krejic, N., Martínez, J.M.: Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numer. Algorithms 32, 249–260 (2003) es_ES
dc.description.references Yabe, H., Martínez, H.J., Tapia, R.A.: On sizing and shifting the BFGS update within the sized-Broyden family of secant updates. SIAM J. Optim. 15(1), 139–160 (2004) es_ES
dc.description.references Heng-Bin, A.: On convergence of the additive archway preconditioned inexact newton method. SIAM J. Numer. Anal. 43(5), 1850–1871 (2005) es_ES
dc.description.references Brett, W.B.: Tensor-Krylov methods for solving large-scale systems of nonlinear equations. SIAM J. Numer. Anal. 43(3), 1321–1347 (2005) es_ES
dc.description.references Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references Marek, J.S.: Convergence of a generalized Newton and inexact generalized Newton algorithms for solving nonlinear equations with non differentiable terms. Numer. Algorithms 50(4), 401–415 (2008) es_ES
dc.description.references Haijun, W.: On new third-order convergent iterative formulas. Numer. Algorithms 48, 317–325 (2008) es_ES
dc.description.references Hueso, J.L., Martínez, E., Torregrosa, J.R.: Modified Newton’s method for systems of nonlinear equations with singular jacobian. J. Comput. Appl. Math. 224, 77–83 (2009) es_ES
dc.description.references Moreno, J.: Explicit construction of inverse function of polynomials. Int. J. Appl. Sci. Comput. 11(1), 53–64 (2004) es_ES
dc.description.references Moreno, J.: Inverse functions of polynomials around all its roots. Int. J. Appl. Sci. Comput. 11(2), 72–84 (2004) es_ES
dc.description.references Demidovich, B.P., Maron, I.A.: Cálculo Numérico Fundamental. Paraninfo, Madrid (1985) es_ES
dc.description.references Moreno, J., Casabán, M.C., Rodríguez-Álvarez, M.J.: An algorithm to initialize the search of solutions of polynomial systems. Comput. Math. Appl. 50, 919–933 (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem