Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno Flores, Joaquín | es_ES |
dc.contributor.author | Saiz Martinez, Andrés | es_ES |
dc.date.accessioned | 2015-04-28T07:31:57Z | |
dc.date.available | 2015-04-28T07:31:57Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1017-1398 | |
dc.identifier.uri | http://hdl.handle.net/10251/49340 | |
dc.description.abstract | In this paper we present a new algorithm for solving polynomial equations based on the Taylor series of the inverse function of a polynomial, fP(y). The foundations of the computing of such series have been previously developed by the authors in some recent papers, proceeding as follows: given a polynomial function y = P(x) = a0 + a1x +···+ amxm, with ai ∈ R, 0 ≤ i ≤ m, and a real number u so that P (u) = 0, we have got an analytic function fP(y) that satisfies x = fP(P(x)) around x = u. Besides, we also introduce a new proof (completely different) of the theorems involves in the construction of fP(y), which provide a better radius of convergence of its Taylor series, and a more general perspective that could allow its application to other kinds of equations, not only polynomials. Finally, we illustrate with some examples how fP(y) could be used for solving polynomial systems. This question has been already treated by the authors in preceding works in a very complex and hard way, that we want to overcome by using the introduced algorithm in this paper. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Newton’s method | es_ES |
dc.subject | Quasi-Newton methods | es_ES |
dc.subject | Inverse function of polynomials | es_ES |
dc.subject | Polynomial zeros | es_ES |
dc.subject | Polynomial systems zeros | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-011-9453-x | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Moreno Flores, J.; Saiz Martinez, A. (2011). Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems. Numerical Algorithms. 58(2):203-233. doi:10.1007/s11075-011-9453-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11075-011-9453-x | es_ES |
dc.description.upvformatpinicio | 203 | es_ES |
dc.description.upvformatpfin | 233 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 41424 | |
dc.description.references | Pérez, R., Rocha, V.L.: Recent applications and numerical implementation of quasi-Newton methods for solving nonlinear systems of equations. Numer. Algorithms 35, 261–285 (2004) | es_ES |
dc.description.references | Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997) | es_ES |
dc.description.references | Pan, V.Y.: On approximating polynomial zeros: modified quad tree (Weyl’s) construction and improved Newton’s iteration. Research Report 2894, INRIA, Sophia-Antipolis, France (1996) | es_ES |
dc.description.references | Pan, V.Y.: Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput. Math. Appl. 31, 97–138 (1996) | es_ES |
dc.description.references | Mcnamee, J.M.: A bibliography on roots of polynomials. J. Comput. Appl. Math. 47, 391–394 (1993) | es_ES |
dc.description.references | Pan, V.Y.: Fast and efficient parallel evaluation of the zeros of a polynomial having only real zeros. Comput. and Math. 17, 1475–1480 (1989) | es_ES |
dc.description.references | Davidon, W.C.: Variable metric methods for min imitation. Research and Development Report ANL-5990 Rev (1959) | es_ES |
dc.description.references | Broyden, C.G., Luss, D.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965) | es_ES |
dc.description.references | Ortega, J.M., Reinboldt, W.C.: Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York (1970) | es_ES |
dc.description.references | Dennid, J.E., More, J.J.: Quasi-Newton methods, motivations and theory. SIAM Rev. 19, 46–89 (1977) | es_ES |
dc.description.references | Martínez, J.M.: Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97–121 (2000) | es_ES |
dc.description.references | Zhang, J.Z., Chen, L.H., Deng, N.Y.: A family scaled factorized Broyden-like methods for nonlinear least squares problems. SIAM J. Optm. 10(4), 1163–1179 (2000) | es_ES |
dc.description.references | Brezinski, C.: Classification of quasi-Newton methods. Numer. Algorithms 33, 123–135 (2003) | es_ES |
dc.description.references | Eriksson, J., Gulliksson, M.E.: Local results for the Gauss-Nreyon method on constrained rank-deficient nonlinear least squares. Math. Comput.73(248), 1865–1883 (2003) | es_ES |
dc.description.references | Birgin, E.G., Krejic, N., Martínez, J.M.: Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numer. Algorithms 32, 249–260 (2003) | es_ES |
dc.description.references | Yabe, H., Martínez, H.J., Tapia, R.A.: On sizing and shifting the BFGS update within the sized-Broyden family of secant updates. SIAM J. Optim. 15(1), 139–160 (2004) | es_ES |
dc.description.references | Heng-Bin, A.: On convergence of the additive archway preconditioned inexact newton method. SIAM J. Numer. Anal. 43(5), 1850–1871 (2005) | es_ES |
dc.description.references | Brett, W.B.: Tensor-Krylov methods for solving large-scale systems of nonlinear equations. SIAM J. Numer. Anal. 43(3), 1321–1347 (2005) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |
dc.description.references | Marek, J.S.: Convergence of a generalized Newton and inexact generalized Newton algorithms for solving nonlinear equations with non differentiable terms. Numer. Algorithms 50(4), 401–415 (2008) | es_ES |
dc.description.references | Haijun, W.: On new third-order convergent iterative formulas. Numer. Algorithms 48, 317–325 (2008) | es_ES |
dc.description.references | Hueso, J.L., Martínez, E., Torregrosa, J.R.: Modified Newton’s method for systems of nonlinear equations with singular jacobian. J. Comput. Appl. Math. 224, 77–83 (2009) | es_ES |
dc.description.references | Moreno, J.: Explicit construction of inverse function of polynomials. Int. J. Appl. Sci. Comput. 11(1), 53–64 (2004) | es_ES |
dc.description.references | Moreno, J.: Inverse functions of polynomials around all its roots. Int. J. Appl. Sci. Comput. 11(2), 72–84 (2004) | es_ES |
dc.description.references | Demidovich, B.P., Maron, I.A.: Cálculo Numérico Fundamental. Paraninfo, Madrid (1985) | es_ES |
dc.description.references | Moreno, J., Casabán, M.C., Rodríguez-Álvarez, M.J.: An algorithm to initialize the search of solutions of polynomial systems. Comput. Math. Appl. 50, 919–933 (2005) | es_ES |