- -

Structured parametric epidemic models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structured parametric epidemic models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Begoña es_ES
dc.contributor.author Coll, Carmen es_ES
dc.contributor.author Sánchez, Elena es_ES
dc.date.accessioned 2015-05-13T08:28:53Z
dc.date.available 2015-05-13T08:28:53Z
dc.date.issued 2014-02-01
dc.identifier.issn 0020-7160
dc.identifier.uri http://hdl.handle.net/10251/50136
dc.description.abstract A stage-structured model for a theoretical epidemic process that incorporates immature, susceptible and infectious individuals in independent stages is formulated. In this analysis, an input interpreted as a birth function is considered. The structural identifiability is studied using the Markov parameters. Then, the unknown parameters are uniquely determined by the output structure corresponding to an observation of infection. Two different birth functions are considered: the linear case and the Beverton-Holt type to analyse the structured epidemic model. Some conditions on the parameters to obtain non-zero disease-free equilibrium points are given. The identifiability of the parameters allows us to determine uniquely the basic reproduction number Script capital R-0 and the stability of the model in the equilibrium is studied using Script capital R-0 in terms of the model parameters. es_ES
dc.description.sponsorship This work has been partially supported by MTM2010-18228. The authors wish to express their thanks to the reviewers for helpful comments and suggestions. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Beverton-Holt function es_ES
dc.subject Basic reproduction number es_ES
dc.subject Equilibrium es_ES
dc.subject Identifiability es_ES
dc.subject Epidemic model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Structured parametric epidemic models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2013.800864
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cantó Colomina, B.; Coll, C.; Sánchez, E. (2014). Structured parametric epidemic models. International Journal of Computer Mathematics. 91(2):188-197. https://doi.org/10.1080/00207160.2013.800864 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00207160.2013.800864 es_ES
dc.description.upvformatpinicio 188 es_ES
dc.description.upvformatpfin 197 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 249896
dc.identifier.eissn 1029-0265
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Allen, L. J. S., & Thrasher, D. B. (1998). The effects of vaccination in an age-dependent model for varicella and herpes zoster. IEEE Transactions on Automatic Control, 43(6), 779-789. doi:10.1109/9.679018 es_ES
dc.description.references Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j es_ES
dc.description.references Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036 es_ES
dc.description.references Cantó, B., Coll, C., & Sánchez, E. (2011). Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations. Mathematical Problems in Engineering, 2011, 1-12. doi:10.1155/2011/510519 es_ES
dc.description.references Cao, H., & Zhou, Y. (2012). The discrete age-structured SEIT model with application to tuberculosis transmission in China. Mathematical and Computer Modelling, 55(3-4), 385-395. doi:10.1016/j.mcm.2011.08.017 es_ES
dc.description.references Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4). doi:10.1007/bf00178324 es_ES
dc.description.references Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: a survey. Automatica, 39(7), 1125-1144. doi:10.1016/s0005-1098(03)00104-3 es_ES
dc.description.references Emmert, K. E., & Allen, L. J. S. (2004). Population Persistence and Extinction in a Discrete-time, Stage-structured Epidemic Model. Journal of Difference Equations and Applications, 10(13-15), 1177-1199. doi:10.1080/10236190410001654151 es_ES
dc.description.references Farina, L., & Rinaldi, S. (2000). Positive Linear Systems. doi:10.1002/9781118033029 es_ES
dc.description.references Van den Hof, J. M. (1998). Structural identifiability of linear compartmental systems. IEEE Transactions on Automatic Control, 43(6), 800-818. doi:10.1109/9.679020 es_ES
dc.description.references T. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980. es_ES
dc.description.references Li, C.-K., & Schneider, H. (2002). Applications of Perron-Frobenius theory to population dynamics. Journal of Mathematical Biology, 44(5), 450-462. doi:10.1007/s002850100132 es_ES
dc.description.references Li, X., & Wang, W. (2005). A discrete epidemic model with stage structure☆. Chaos, Solitons & Fractals, 26(3), 947-958. doi:10.1016/j.chaos.2005.01.063 es_ES
dc.description.references Ma, J., & Earn, D. J. D. (2006). Generality of the Final Size Formula for an Epidemic of a Newly Invading Infectious Disease. Bulletin of Mathematical Biology, 68(3), 679-702. doi:10.1007/s11538-005-9047-7 es_ES
dc.description.references Wang, W., & Zhao, X.-Q. (2004). An epidemic model in a patchy environment. Mathematical Biosciences, 190(1), 97-112. doi:10.1016/j.mbs.2002.11.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem