- -

A comparative study using an autostereoscopic display with augmented and virtual reality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparative study using an autostereoscopic display with augmented and virtual reality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arino, Juan-J. es_ES
dc.contributor.author Juan Lizandra, María Carmen es_ES
dc.contributor.author Gil Gómez, José Antonio es_ES
dc.contributor.author Mollá Vayá, Ramón Pascual es_ES
dc.date.accessioned 2015-06-08T11:54:48Z
dc.date.available 2015-06-08T11:54:48Z
dc.date.issued 2014
dc.identifier.issn 0144-929X
dc.identifier.uri http://hdl.handle.net/10251/51394
dc.description.abstract Advances in display devices are facilitating the integration of stereoscopic visualization in our daily lives. However, autostereoscopic visualization has not been extensively exploited. In this paper, we present a system that combines Augmented Reality (AR) and autostereoscopic visualization. We also present the first study that compares different aspects using an autostereoscopic display with AR and VR, in which 39 children from 8 to 10 years old participated. In our study, no statistically significant differences were found between AR and VR. However, the scores were very high in nearly all of the questions, and the children also scored the AR version higher in all cases. Moreover, the children explicitly preferred the AR version (81%). For the AR version, a strong and significant correlation was found between the use of the autostereoscopic screen in games and seeing the virtual object on the marker. For the VR version, two strong and significant correlations were found. The first correlation was between the ease of play and the use of the rotatory controller. The second correlation was between depth perception and the game global score. Therefore, the combinations of AR and VR with autostereoscopic visualization are possibilities for developing edutainment systems for children es_ES
dc.description.sponsorship This work was funded by the Spanish APRENDRA project (TIN2009-14319-C02). We would like to thank the following for their contributions: AIJU, the "Escola d'Estiu" and especially Ignacio Segui, Juan Cano, Miguelon Gimenez, and Javier Irimia. This work would not have been possible without their collaboration. The ALF3D project (TIN2009-14103-03) for the autostereoscopic display. Roberto Vivo, Rafa Gaitan, Severino Gonzalez, and M. Jose Vicent, for their help. The children's parents who signed the agreement to allow their children to participate in the study. The children who participated in the study. The ETSInf for letting us use its facilities during the testing phase. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof Behaviour and Information Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Augmented reality es_ES
dc.subject Virtual reality es_ES
dc.subject Comparative study, autostereoscopy es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A comparative study using an autostereoscopic display with augmented and virtual reality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/0144929X.2013.815277
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14319-C02-02/ES/Desarrollo Y Validacion De Sistemas De Realidad Aumentada Para Aprendizaje-Entretenimiento/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14319-C02-01/ES/Desarrollo Y Validacion De Sistemas De Realidad Aumentada Para Aprendizaje-Entretenimiento/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14103-C03-03/ES/Campos De Luz Avanzados Para La Visualizacion Autoestereoscopica En 3D/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Arino, J.; Juan Lizandra, MC.; Gil Gómez, JA.; Mollá Vayá, RP. (2014). A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour and Information Technology. 33(6):646-655. https://doi.org/10.1080/0144929X.2013.815277 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/0144929X.2013.815277 es_ES
dc.description.upvformatpinicio 646 es_ES
dc.description.upvformatpfin 655 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 279449
dc.identifier.eissn 1362-3001
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355 es_ES
dc.description.references Blum, T.et al. 2012. Mirracle: augmented reality in-situ visualization of human anatomy using a magic mirror.In: IEEE virtual reality workshops, 4–8 March 2012, Costa Mesa, CA, USA. Washington, DC: IEEE Computer Society, 169–170. es_ES
dc.description.references Botden, S. M. B. I., Buzink, S. N., Schijven, M. P., & Jakimowicz, J. J. (2007). Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference? World Journal of Surgery, 31(4), 764-772. doi:10.1007/s00268-006-0724-y es_ES
dc.description.references Chittaro, L., & Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. Computers & Education, 49(1), 3-18. doi:10.1016/j.compedu.2005.06.002 es_ES
dc.description.references Dodgson, N. A. (2005). Autostereoscopic 3D displays. Computer, 38(8), 31-36. doi:10.1109/mc.2005.252 es_ES
dc.description.references Ehara, J., & Saito, H. (2006). Texture overlay for virtual clothing based on PCA of silhouettes. 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. doi:10.1109/ismar.2006.297805 es_ES
dc.description.references Eisert, P., Fechteler, P., & Rurainsky, J. (2008). 3-D Tracking of shoes for Virtual Mirror applications. 2008 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2008.4587566 es_ES
dc.description.references Fiala, M. (2007). Magic Mirror System with Hand-held and Wearable Augmentations. 2007 IEEE Virtual Reality Conference. doi:10.1109/vr.2007.352493 es_ES
dc.description.references Froner, B., Holliman, N. S., & Liversedge, S. P. (2008). A comparative study of fine depth perception on two-view 3D displays. Displays, 29(5), 440-450. doi:10.1016/j.displa.2008.03.001 es_ES
dc.description.references Holliman, N. S., Dodgson, N. A., Favalora, G. E., & Pockett, L. (2011). Three-Dimensional Displays: A Review and Applications Analysis. IEEE Transactions on Broadcasting, 57(2), 362-371. doi:10.1109/tbc.2011.2130930 es_ES
dc.description.references Ilgner, J. F. R., Kawai, T., Shibata, T., Yamazoe, T., & Westhofen, M. (2006). Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. Stereoscopic Displays and Virtual Reality Systems XIII. doi:10.1117/12.647591 es_ES
dc.description.references Jeong, J.-S., Park, C., Kim, M., Oh, W.-K., & Yoo, K.-H. (2011). Development of a 3D Virtual Laboratory with Motion Sensor for Physics Education. Ubiquitous Computing and Multimedia Applications, 253-262. doi:10.1007/978-3-642-20975-8_28 es_ES
dc.description.references Jones, J. A., Swan, J. E., Singh, G., Kolstad, E., & Ellis, S. R. (2008). The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. Proceedings of the 5th symposium on Applied perception in graphics and visualization - APGV ’08. doi:10.1145/1394281.1394283 es_ES
dc.description.references Juan, M. C., & Pérez, D. (2010). Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Computers & Graphics, 34(6), 756-766. doi:10.1016/j.cag.2010.08.001 es_ES
dc.description.references Kaufmann, H., & Csisinko, M. (2011). Wireless Displays in Educational Augmented Reality Applications. Handbook of Augmented Reality, 157-175. doi:10.1007/978-1-4614-0064-6_6 es_ES
dc.description.references Kaufmann, H., & Meyer, B. (2008). Simulating educational physical experiments in augmented reality. ACM SIGGRAPH ASIA 2008 educators programme on - SIGGRAPH Asia ’08. doi:10.1145/1507713.1507717 es_ES
dc.description.references Konrad, J. (2011). 3D Displays. Optical and Digital Image Processing, 369-395. doi:10.1002/9783527635245.ch17 es_ES
dc.description.references Konrad, J., & Halle, M. (2007). 3-D Displays and Signal Processing. IEEE Signal Processing Magazine, 24(6), 97-111. doi:10.1109/msp.2007.905706 es_ES
dc.description.references Kwon, H., & Choi, H.-J. (2012). A time-sequential mutli-view autostereoscopic display without resolution loss using a multi-directional backlight unit and an LCD panel. Stereoscopic Displays and Applications XXIII. doi:10.1117/12.907793 es_ES
dc.description.references Livingston, M. A., Zanbaka, C., Swan, J. E., & Smallman, H. S. (s. f.). Objective measures for the effectiveness of augmented reality. IEEE Proceedings. VR 2005. Virtual Reality, 2005. doi:10.1109/vr.2005.1492798 es_ES
dc.description.references Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353. doi:10.1016/j.compedu.2006.12.008 es_ES
dc.description.references Montgomery, D. J., Woodgate, G. J., Jacobs, A. M. S., Harrold, J., & Ezra, D. (2001). <title>Performance of a flat-panel display system convertible between 2D and autostereoscopic 3D modes</title>. Stereoscopic Displays and Virtual Reality Systems VIII. doi:10.1117/12.430813 es_ES
dc.description.references Morphew, M. E., Shively, J. R., & Casey, D. (2004). Helmet-mounted displays for unmanned aerial vehicle control. Helmet- and Head-Mounted Displays IX: Technologies and Applications. doi:10.1117/12.541031 es_ES
dc.description.references Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28. doi:10.1016/j.cag.2005.10.004 es_ES
dc.description.references Petkov, E. G. (2010). Educational Virtual Reality through a Multiview Autostereoscopic 3D Display. Innovations in Computing Sciences and Software Engineering, 505-508. doi:10.1007/978-90-481-9112-3_86 es_ES
dc.description.references Shen, Y., Ong, S. K., & Nee, A. Y. C. (2011). Vision-Based Hand Interaction in Augmented Reality Environment. International Journal of Human-Computer Interaction, 27(6), 523-544. doi:10.1080/10447318.2011.555297 es_ES
dc.description.references Swan, J. E., Jones, A., Kolstad, E., Livingston, M. A., & Smallman, H. S. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE Transactions on Visualization and Computer Graphics, 13(3), 429-442. doi:10.1109/tvcg.2007.1035 es_ES
dc.description.references Urey, H., Chellappan, K. V., Erden, E., & Surman, P. (2011). State of the Art in Stereoscopic and Autostereoscopic Displays. Proceedings of the IEEE, 99(4), 540-555. doi:10.1109/jproc.2010.2098351 es_ES
dc.description.references Zhang, Y., Ji, Q., and Zhang, W., 2010. Multi-view autostereoscopic 3D display.In: International conference on optics photonics and energy engineering, 10–11 May 2010, Wuhan, China. Washington, DC: IEEE Computer Society, 58–61. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem