Mostrar el registro sencillo del ítem
dc.contributor.author | Presenda Barrera, Álvaro | es_ES |
dc.contributor.author | Salvador Moya, Mª Dolores | es_ES |
dc.contributor.author | Peñaranda Foix, Felipe Laureano | es_ES |
dc.contributor.author | Catalá Civera, José Manuel | es_ES |
dc.contributor.author | Borrell Tomás, María Amparo | |
dc.date.accessioned | 2015-06-16T07:21:32Z | |
dc.date.available | 2015-06-16T07:21:32Z | |
dc.date.issued | 2014-10 | |
dc.identifier.issn | 1662-0356 | |
dc.identifier.uri | http://hdl.handle.net/10251/51745 | |
dc.description.abstract | [EN] Ceramics for dental applications have become increasingly important in the last decades. Particularly, the introduction of yttria-stabilized zirconia tetragonal polycrystalline (Y-TZP) materials as an alternative to the manufacturing of dental implants and prosthesis has provided a powerful tool to meet the demands required for these replacements in terms of biocompatibility, toughness, hardness and optical properties. Several commercial Y-TZP materials are currently available on the market and strong efforts in research and development facilities are being carried out to improve processing of Y-TZP to fully consolidate odontological pieces. Novel processing methods for ceramic powder sintering, including Y-TZP, aim to reduce processing times and production costs significantly, while maintaining or even improving the resulting microstructure and mechanical properties of the material. One of these methods includes microwave sintering. The purpose of this study is to characterize and compare the resulting properties of Y-TZP materials after conventional sintering and the non-conventional method of microwave heating. In this work one commercial material and one laboratory-synthesized Y-TZP powder are considered. The results suggest that microwave sintering results, generally, in better mechanical properties of the material in terms of hardness and fracture toughness than conventional sintering. | es_ES |
dc.description.sponsorship | The authors would like to thank the financial support received from Universidad Politécnica de Valencia under project SP20120677 and Ministerio de Economía y Competitividad (MINECO) and co-funded by ERDF (European Regional Development Funds) through the project (TEC2012- 37532-C02-01). A. Borrell acknowledges the Spanish Ministry of Science and Innovation for a Juan de la Cierva contract (JCI-2011-10498). A. Presenda acknowledges the Generalitat Valenciana for his Santiago Grisolía program scholarship (REF. GRISOLÍA/2013/035). The authors would also like to acknowledge the SCSIE of the University of Valencia. | |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Advances in Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Y-TZP zirconia | es_ES |
dc.subject | Microwave sintering | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Dental applications | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Mechanical characterization of conventional and non-conventional sintering methods of commercial and lab-synthesized Y-TZP zirconia for dental applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/www.scientific.net/AST.87.151 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLÍA%2F2013%2F035/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-10498/ES/JCI-2011-10498/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-37532-C02-01/ES/DISPOSITIVOS DE DIELECTROMETRIA DINAMICA DE MICROONDAS DE POTENCIA PARA SINTERIZADO DE MATERIALES DE ALTO RENDIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120677/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Presenda Barrera, Á.; Salvador Moya, MD.; Peñaranda Foix, FL.; Catalá Civera, JM.; Borrell Tomás, MA. (2014). Mechanical characterization of conventional and non-conventional sintering methods of commercial and lab-synthesized Y-TZP zirconia for dental applications. Advances in Science and Technology. 87:151-156. https://doi.org/10.4028/www.scientific.net/AST.87.151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.scientific.net/AST.87.151 | es_ES |
dc.description.upvformatpinicio | 151 | es_ES |
dc.description.upvformatpfin | 156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 87 | es_ES |
dc.relation.senia | 268462 | |
dc.identifier.eissn | 1661-819X | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | C. Piconi, G. Maccauro, Zirconia as a Ceramic Biomaterial. Biomaterials, 20 (1999) 1‐25. | es_ES |
dc.description.references | M. Guazzato, M. Albakry, S. Ringer, M. Swain, Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Dental Materials, 20 (2004) 449-456. | es_ES |
dc.description.references | R. M. McMeeking, A. G. Evans, Mechanics of Transformation-Toughening in Brittle Materials. Journal of the American Ceramic Society, 65 (1982) 242–246. | es_ES |
dc.description.references | R. Benavente, Estudio de Materiales con Coeficiente de Dilatación Controlado Sinterizados por Técnicas No-Convencionales para Aplicaciones Espaciales, 2013, Master Thesis, Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia. | es_ES |
dc.description.references | M. Oghbaei, O. Mirzaee, Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. Journal of Alloys and Compounds, 494 (2010) 175-189. | es_ES |
dc.description.references | K. Niihara, R. Morena, D. P. H. Hasselman, Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indentation Ratios. Journal of Materials Science Letters, 1 (1982) 13-16. | es_ES |
dc.description.references | A. Borrell, M. D. Salvador, F. Peñaranda-Foix, J.M. Cátala-Civera, Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties. International Journal of Applied Ceramic Technology, 10 (2013) 313-320. | es_ES |
dc.description.references | A. Borrell, M. D. Salvador, E. Rayón, F. Peñaranda-Foix, Improvement of Microstructural Properties of 3Y-TZP Materials by Conventional and Non-Conventional Sintering Techniques. Ceramics International, 38 (2012) 39-43. | es_ES |
dc.description.references | J. R. Kelly, I. Denry, Stabilized Zirconia as a Structural Ceramic: An Overview. Dental Materials, 24 (2008) 289-298. | es_ES |
dc.description.references | S. Zinelis, A. Thomas, K. Syres, N. Silikas, G. Eliades, Surface Characterization of Zirconia Implants. Dental Materials, 26 (2010) 295-305. | es_ES |