- -

Non-steady state modeling of wheel-rail contact problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-steady state modeling of wheel-rail contact problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guiral, A. es_ES
dc.contributor.author Alonso, A. es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.contributor.author Giménez, J.G. es_ES
dc.date.accessioned 2015-07-07T10:28:37Z
dc.date.available 2015-07-07T10:28:37Z
dc.date.issued 2013-01-01
dc.identifier.issn 0042-3114
dc.identifier.uri http://hdl.handle.net/10251/52777
dc.description.abstract Among all the algorithms to solve the wheel–rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Vehicle System Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wheel–rail contact es_ES
dc.subject Non-steady state es_ES
dc.subject Railway simulation es_ES
dc.subject Variable normal load es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Non-steady state modeling of wheel-rail contact problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00423114.2012.713499
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Guiral, A.; Alonso, A.; Baeza González, LM.; Giménez, J. (2013). Non-steady state modeling of wheel-rail contact problem. Vehicle System Dynamics. 51(1):91-108. doi:10.1080/00423114.2012.713499 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00423114.2012.713499 es_ES
dc.description.upvformatpinicio 91 es_ES
dc.description.upvformatpfin 108 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 236582
dc.identifier.eissn 1744-5159
dc.description.references KALKER, J. J. (1982). A Fast Algorithm for the Simplified Theory of Rolling Contact. Vehicle System Dynamics, 11(1), 1-13. doi:10.1080/00423118208968684 es_ES
dc.description.references Vermeulen, P. J., & Johnson, K. L. (1964). Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces. Journal of Applied Mechanics, 31(2), 338-340. doi:10.1115/1.3629610 es_ES
dc.description.references SHEN, Z. Y., HEDRICK, J. K., & ELKINS, J. A. (1983). A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis. Vehicle System Dynamics, 12(1-3), 79-83. doi:10.1080/00423118308968725 es_ES
dc.description.references Polach, O. (1999). A Fast Wheel-Rail Forces Calculation Computer Code. Vehicle System Dynamics, 33(sup1), 728-739. doi:10.1080/00423114.1999.12063125 es_ES
dc.description.references Vollebregt, E. A. H., Iwnicki, S. D., Xie, G., & Shackleton, P. (2012). Assessing the accuracy of different simplified frictional rolling contact algorithms. Vehicle System Dynamics, 50(1), 1-17. doi:10.1080/00423114.2011.552618 es_ES
dc.description.references Kalker, J. J. (1971). Transient Rolling Contact Phenomena. A S L E Transactions, 14(3), 177-184. doi:10.1080/05698197108983240 es_ES
dc.description.references Kalker , J. J. 1990 .Three-dimensional Elastic Bodies in Rolling Contact, 1 , 314 Dordrecht : Kluwer Academic Publisher . es_ES
dc.description.references GROSS-THEBING, A. (1989). Frequency-Dependent Creep Coefficients for Three-Dimensional Rolling Contact Problems. Vehicle System Dynamics, 18(6), 359-374. doi:10.1080/00423118908968927 es_ES
dc.description.references Groβ-Thebing, A., Knothe, K., & Hempelmann, K. (1992). WHEEL-RAIL CONTACT MECHANICS FOR SHORT WAVELENGTHS RAIL IRREGULARITIES. Vehicle System Dynamics, 20(sup1), 210-224. doi:10.1080/00423119208969399 es_ES
dc.description.references Shen, Z., & Li, Z. (1996). A fast non-steady state creep force model based on the simplified theory. Wear, 191(1-2), 242-244. doi:10.1016/0043-1648(95)06692-6 es_ES
dc.description.references Alonso, A., & Giménez, J. G. (2008). Non-steady state modelling of wheel-rail contact problem for the dynamic simulation of railway vehicles. Vehicle System Dynamics, 46(3), 179-196. doi:10.1080/00423110701248011 es_ES
dc.description.references Alonso, A., & Giménez, J. G. (2008). Non-steady state contact with falling friction coefficient. Vehicle System Dynamics, 46(sup1), 779-789. doi:10.1080/00423110802037040 es_ES
dc.description.references Baeza, L., Fuenmayor, F. J., Carballeira, J., & Roda, A. (2007). Influence of the wheel-rail contact instationary process on contact parameters. The Journal of Strain Analysis for Engineering Design, 42(5), 377-387. doi:10.1243/03093247jsa247 es_ES
dc.description.references Giménez, J., Alonso, A., & Gómez *, E. (2005). Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics, 43(4), 233-244. doi:10.1080/00423110412331282913 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem