- -

Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mendoza, Juan D. es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Campuzano Bolarín, Francisco es_ES
dc.date.accessioned 2015-07-09T10:56:53Z
dc.date.available 2015-07-09T10:56:53Z
dc.date.issued 2014
dc.identifier.issn 0144-3577
dc.identifier.uri http://hdl.handle.net/10251/52879
dc.description.abstract Purpose - The purpose of this paper is to explore different aggregate production planning (APP) strategies (inventory levelling, validation of the workforce and flexible production alternatives: overtime and/or outsourcing) by using a system dynamics model in a two-level, multi-product, multi-period manpower intensive supply chain (SC). Therefore, the appropriateness of using systems dynamics as a research method, by focusing on managerial applications, to analyse APP policies is proven. From the combination of systems dynamics and APP, recommendations and action strategies are considered for each scenario to understand how the system performs and to improve decision making on APP in the SC context. Design/methodology/approach - The research design analyses a typical factory setting with representative parameter settings for five different conventional APP policies - inventory levelling, workforce variation, overtime, outsourcing and a combination of overtime and outsourcing - through deterministic systems dynamics-based simulation. In order to validate the simulation model, the results from published APP models were replicated. Then, optimisation is conducted for this deterministic setting to determine the performance of all these typical policies with optimal parameter settings. Next, a Monte Carlo stochastic simulation is used to assess the robustness of such performances in a variety of demand settings. Different aggregate plans are tested and the effect that events like demand variability and production times have on the SC performance results is analysed. Findings - The results support the assertion that the greater the demand variability, the higher the flexibility costs (overtime, outsourcing, inventory levelling, and contracts and firings). As greater inter-month oscillations appear, which must be covered with additional alternatives, the optimum number of employees must be determined by analysing the interchanges and marginal costs between capacity oversizing costs (wages, idle time, storage) and the costs to undersize it (penalties for lowering safety stocks, delayed demand, greater use of overtime and outsourcing). Accordingly, controlling the times to avoid increased costs and penalties incurred by delayed demand becomes an essential important task, but one that also depends on the characteristics of this variability. Practical implications - This paper has developed a modelling approach for APP in a manpower intensive SC by applying system dynamics. It includes a simulation model, the analysis of several scenarios, the impact on performance caused by variability events in the parameters, and some recommendations and action strategies to be subsequently applied. The modelling methodology proposed can be employed to design-specific models for each SC. Originality/value - This paper proposes an APP system dynamics approach in a two-level, multi-product, multi-period manpower intensive SC for the first time. This model bridges the gap in the literature relating to simulation, specifically system dynamics and its application for APP. The paper also provides a qualitative description of the various pros and cons of each analysed policy and how they can be combined. es_ES
dc.language Inglés es_ES
dc.publisher Emerald es_ES
dc.relation.ispartof International Journal of Operations and Production Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Supply chain management es_ES
dc.subject System dynamics es_ES
dc.subject Simulation es_ES
dc.subject Operations planning es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1108/IJOPM-06-2012-0238
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Mendoza, JD.; Mula, J.; Campuzano Bolarín, F. (2014). Using systems dynamics to evaluate the tradeoff among supply chain aggregate production planning policies. International Journal of Operations and Production Management. 34(8):1055-1079. doi:10.1108/IJOPM-06-2012-0238 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1108/IJOPM-06-2012-0238 es_ES
dc.description.upvformatpinicio 1055 es_ES
dc.description.upvformatpfin 1079 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 287246
dc.description.references Aliev, R.A. , Fazlollahi, B. , Guirimov, B.G. and Aliev, R.R. (2007), “Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management”, J. Inf. Sci., An Int. J., Vol. 177 No. 20, pp. 4241-4255. es_ES
dc.description.references Appelqvist, P., & Lehtonen, J. (2005). Combining optimisation and simulation for steel production scheduling. Journal of Manufacturing Technology Management, 16(2), 197-210. doi:10.1108/17410380510576831 es_ES
dc.description.references Bertolini, M., & Rizzi, A. (2002). A simulation approach to manage finished goods inventory replenishment economically in a mixed push/pull environment. Logistics Information Management, 15(4), 281-293. doi:10.1108/09576050210436129 es_ES
dc.description.references Buxey, G. (2003). Strategy not tactics drives aggregate planning. International Journal of Production Economics, 85(3), 331-346. doi:10.1016/s0925-5273(03)00120-8 es_ES
dc.description.references Byrne, M. ., & Bakir, M. . (1999). Production planning using a hybrid simulation – analytical approach. International Journal of Production Economics, 59(1-3), 305-311. doi:10.1016/s0925-5273(98)00104-2 es_ES
dc.description.references Campuzano, F., Mula, J., & Peidro, D. (2010). Fuzzy estimations and system dynamics for improving supply chains. Fuzzy Sets and Systems, 161(11), 1530-1542. doi:10.1016/j.fss.2009.12.002 es_ES
dc.description.references Das, B. ., Rickard, J. ., Shah, N., & Macchietto, S. (2000). An investigation on integration of aggregate production planning, master production scheduling and short-term production scheudling of batch process operations through a common data model. Computers & Chemical Engineering, 24(2-7), 1625-1631. doi:10.1016/s0098-1354(00)80014-9 es_ES
dc.description.references Dejonckheere, J., Disney, S. M., Lambrecht, M., & Towill, D. R. (2003). The dynamics of aggregate planning. Production Planning & Control, 14(6), 497-516. doi:10.1080/09537280310001621967 es_ES
dc.description.references De Toni, A., Nassimbeni, G., & Tonchia, S. (1996). An artificial, intelligence‐based production scheduler. Integrated Manufacturing Systems, 7(3), 17-25. doi:10.1108/09576069610116896 es_ES
dc.description.references Dewhurst, F., Barber, K., & Rogers, J. J. B. (2001). Towards integrated manufacturing planning with common tool and information sets. International Journal of Operations & Production Management, 21(11), 1460-1482. doi:10.1108/eum0000000006225 es_ES
dc.description.references Disney, S. M., Naim, M. M., & Potter, A. (2004). Assessing the impact of e-business on supply chain dynamics. International Journal of Production Economics, 89(2), 109-118. doi:10.1016/s0925-5273(02)00464-4 es_ES
dc.description.references Gomes da Silva, C., Figueira, J., Lisboa, J., & Barman, S. (2006). An interactive decision support system for an aggregate production planning model based on multiple criteria mixed integer linear programming. Omega, 34(2), 167-177. doi:10.1016/j.omega.2004.08.007 es_ES
dc.description.references Greasley, A. (2005). Using system dynamics in a discrete‐event simulation study of a manufacturing plant. International Journal of Operations & Production Management, 25(6), 534-548. doi:10.1108/01443570510599700 es_ES
dc.description.references Hernández, J. E., Mula, J., & Ferriols, F. J. (2008). A reference model for conceptual modelling of production planning processes. Production Planning & Control, 19(8), 725-734. doi:10.1080/09537280802476128 es_ES
dc.description.references Hernández, J. E., Mula, J., Ferriols, F. J., & Poler, R. (2008). A conceptual model for the production and transport planning process: An application to the automobile sector. Computers in Industry, 59(8), 842-852. doi:10.1016/j.compind.2008.06.004 es_ES
dc.description.references Huq, F., Cutright, K., Jones, V., & Hensler, D. A. (2006). Simulation study of a two‐level warehouse inventory replenishment system. International Journal of Physical Distribution & Logistics Management, 36(1), 51-65. doi:10.1108/09600030610642931 es_ES
dc.description.references Ismail, M. A., & ElMaraghy, H. (2009). Progressive modeling—An enabler of dynamic changes in production planning. CIRP Annals, 58(1), 407-412. doi:10.1016/j.cirp.2009.03.094 es_ES
dc.description.references Jalmania, A. and Feili, A. (2011), “A simulation testing and analysis of aggregate production planning strategies”, Prod. Plan. Control, Vol. 24 No. 6, pp. 423-448. es_ES
dc.description.references Jamalnia, A., & Soukhakian, M. A. (2009). A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Computers & Industrial Engineering, 56(4), 1474-1486. doi:10.1016/j.cie.2008.09.010 es_ES
dc.description.references Kamath, N. B., & Roy, R. (2007). Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework. European Journal of Operational Research, 179(2), 334-351. doi:10.1016/j.ejor.2006.03.045 es_ES
dc.description.references Lambert, D. M., & Cooper, M. C. (2000). Issues in Supply Chain Management. Industrial Marketing Management, 29(1), 65-83. doi:10.1016/s0019-8501(99)00113-3 es_ES
dc.description.references Lee, Y. H., & Kim, S. H. (2002). Production–distribution planning in supply chain considering capacity constraints. Computers & Industrial Engineering, 43(1-2), 169-190. doi:10.1016/s0360-8352(02)00063-3 es_ES
dc.description.references Leung, S. C. H., & Chan, S. S. W. (2009). A goal programming model for aggregate production planning with resource utilization constraint. Computers & Industrial Engineering, 56(3), 1053-1064. doi:10.1016/j.cie.2008.09.017 es_ES
dc.description.references Lisboa, J., & Yasin, M. (1999). The impact of workforce level restriction on the performance of the linear decision rule: an exploratory production planning study. Industrial Management & Data Systems, 99(4), 156-164. doi:10.1108/02635579910274479 es_ES
dc.description.references Minegishi, S., & Thiel, D. (2000). System dynamics modeling and simulation of a particular food supply chain. Simulation Practice and Theory, 8(5), 321-339. doi:10.1016/s0928-4869(00)00026-4 es_ES
dc.description.references Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008 es_ES
dc.description.references Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285. doi:10.1016/j.ijpe.2005.09.001 es_ES
dc.description.references Nam, S., & Logendran, R. (1992). Aggregate production planning — A survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272. doi:10.1016/0377-2217(92)90356-e es_ES
dc.description.references Özbayrak, M., Papadopoulou, T. C., & Akgun, M. (2007). Systems dynamics modelling of a manufacturing supply chain system. Simulation Modelling Practice and Theory, 15(10), 1338-1355. doi:10.1016/j.simpat.2007.09.007 es_ES
dc.description.references Pan, L. and Kleiner, B.H. (1995), “Aggregate planning today”, J. Work Study – MCB univ. press, Vol. 44 No. 3, pp. 4-7. es_ES
dc.description.references Pastor, R., Altimiras, J., & Mateo, M. (2009). Planning production using mathematical programming: The case of a woodturning company. Computers & Operations Research, 36(7), 2173-2178. doi:10.1016/j.cor.2008.08.005 es_ES
dc.description.references Sharif, A. M. (2005). Can systems dynamics be effective in modelling dynamic business systems? Business Process Management Journal, 11(5), 612-615. doi:10.1108/14637150510619911 es_ES
dc.description.references Singhvi, A., Madhavan, K. P., & Shenoy, U. V. (2004). Pinch analysis for aggregate production planning in supply chains. Computers & Chemical Engineering, 28(6-7), 993-999. doi:10.1016/j.compchemeng.2003.09.006 es_ES
dc.description.references Suryani, E., Chou, S.-Y., Hartono, R., & Chen, C.-H. (2010). Demand scenario analysis and planned capacity expansion: A system dynamics framework. Simulation Modelling Practice and Theory, 18(6), 732-751. doi:10.1016/j.simpat.2010.01.013 es_ES
dc.description.references Wang, R.-C., & Fang, H.-H. (2001). Aggregate production planning with multiple objectives in a fuzzy environment. European Journal of Operational Research, 133(3), 521-536. doi:10.1016/s0377-2217(00)00196-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem