- -

Acoustic radiation efficiency of a periodically corrugated rigid piston

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustic radiation efficiency of a periodically corrugated rigid piston

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Estrada, Héctor es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2015-07-10T09:59:24Z
dc.date.available 2015-07-10T09:59:24Z
dc.date.issued 2012-09-03
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/52987
dc.description Copyright (2012) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in Applied Physics Letters 101, (2012) and may be found at http://dx.doi.org/10.1063/1.4748868. Authors own version of final article on e-print servers es_ES
dc.description.abstract The radiation of sound by a periodically corrugated rigid piston is explored using theoretical and numerical approaches and compared with the radiation of flat rigid piston. The depth and the period of the corrugation are considered to be comparable with the wavelength in the surrounding fluid. Radiation enhancement is predicted due to cavity resonances and coherent diffraction. In addition, broad regions of low radiation efficiency are observed. Both effects could have an impact in acoustic transducers technology, either to increase the piston radiated power or to create a source of evanescent acoustic waves. The possibilities offered by this strategy in the nonlinear acoustic regime are also briefly discussed. (C) 2012 American Institute of Physics. es_ES
dc.description.sponsorship This work has been supported by the Spanish MICINN (MAT2010-16879, Consolider CSD2007-00046 and Universitat Politecnica de Valencia (PAID-06-10-1839). We gratefully acknowledge the valuable help of Javier Garcia de Abajo in the development of the modal model. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arrays es_ES
dc.subject Transducers es_ES
dc.subject Design es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Acoustic radiation efficiency of a periodically corrugated rigid piston es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4748868
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-16879/ES/ONDAS MECANICAS EN PLACAS PERFORADAS. APLICACIONES TECNOLOGICAS: ADAPTADORES DE IMPEDANCIAS Y AISLAMIENTO ACUSTICO A RUIDO AEREO./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-1839/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Estrada, H.; Uris Martínez, A.; Meseguer Rico, FJ. (2012). Acoustic radiation efficiency of a periodically corrugated rigid piston. Applied Physics Letters. 101. https://doi.org/10.1063/1.4748868 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4748868 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.relation.senia 234925
dc.identifier.eissn 1077-3118
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Desilets, C. S., Fraser, J. D., & Kino, G. S. (1978). The design of efficient broad-band piezoelectric transducers. IEEE Transactions on Sonics and Ultrasonics, 25(3), 115-125. doi:10.1109/t-su.1978.31001 es_ES
dc.description.references Von Ramm, O. T., & Smith, S. W. (1983). Beam Steering with Linear Arrays. IEEE Transactions on Biomedical Engineering, BME-30(8), 438-452. doi:10.1109/tbme.1983.325149 es_ES
dc.description.references Smith, S. W., Pavy, H. G., & von Ramm, O. T. (1991). High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 38(2), 100-108. doi:10.1109/58.68466 es_ES
dc.description.references Smith, W. A. (s. f.). The role of piezocomposites in ultrasonic transducers. Proceedings., IEEE Ultrasonics Symposium. doi:10.1109/ultsym.1989.67088 es_ES
dc.description.references Oralkan, O., Ergun, A. S., Johnson, J. A., Karaman, M., Demirci, U., Kaviani, K., … Khuri-Yakub, B. T. (2002). Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging? IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 49(11), 1596-1610. doi:10.1109/tuffc.2002.1049742 es_ES
dc.description.references Gomez, T. E., & Montero, F. (s. f.). Bridging the gap of impedance mismatch between air and solid materials. 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121). doi:10.1109/ultsym.2000.921509 es_ES
dc.description.references Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., & Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668), 667-669. doi:10.1038/35570 es_ES
dc.description.references M. Hannink, “Acoustic resonators for the reduction of sound radiation and transmission,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 2007). es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., & García de Abajo, F. J. (2011). Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion, 48(3), 235-242. doi:10.1016/j.wavemoti.2010.10.008 es_ES
dc.description.references Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., & Sheng, P. (2007). Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 76(5). doi:10.1103/physrevb.76.054303 es_ES
dc.description.references Lu, M.-H., Liu, X.-K., Feng, L., Li, J., Huang, C.-P., Chen, Y.-F., … Ming, N.-B. (2007). Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 99(17). doi:10.1103/physrevlett.99.174301 es_ES
dc.description.references Christensen, J., Martin-Moreno, L., & Garcia-Vidal, F. J. (2008). Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 101(1). doi:10.1103/physrevlett.101.014301 es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., & García de Abajo, F. J. (2008). Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 93(1), 011907. doi:10.1063/1.2955825 es_ES
dc.description.references Javier García de Abajo, F., Estrada, H., & Meseguer, F. (2009). Diacritical study of light, electrons and sound scattering by particles and holes. New Journal of Physics, 11(9), 093013. doi:10.1088/1367-2630/11/9/093013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem