- -

Hardness of FRHC-Cu determined by statistical analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hardness of FRHC-Cu determined by statistical analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roa, J. J. es_ES
dc.contributor.author Martínez, M. es_ES
dc.contributor.author Rayón Encinas, Emilio es_ES
dc.contributor.author Ferrer, N. es_ES
dc.contributor.author Espiell, F. es_ES
dc.contributor.author Segarra, M. es_ES
dc.date.accessioned 2015-07-22T10:25:16Z
dc.date.available 2015-07-22T10:25:16Z
dc.date.issued 2014-02
dc.identifier.issn 1059-9495
dc.identifier.uri http://hdl.handle.net/10251/53576
dc.description.abstract A statistical indentation method has been employed to study the hardness value of fire-refined high conductivity copper, using nanoindentation technique. The Joslin and Oliver approach was used with the aim to separate the hardness (H) influence of copper matrix, from that of inclusions and grain boundaries. This approach relies on a large array of imprints (around 400 indentations), performed at 150 nm of indentation depth. A statistical study using a cumulative distribution function fit and Gaussian simulated distributions, exhibits that H for each phase can be extracted when the indentation depth is much lower than the size of the secondary phases. It is found that the thermal treatment produces a hardness increase, due to the partly re-dissolution of the inclusions (mainly Pb and Sn) in the matrix. es_ES
dc.language Inglés es_ES
dc.publisher ASM International es_ES
dc.relation.ispartof Journal of Materials Engineering and Performance es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cumulative distribution function es_ES
dc.subject FRHC copper es_ES
dc.subject Nanoindentation es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Hardness of FRHC-Cu determined by statistical analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11665-013-0770-1
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Roa, JJ.; Martínez, M.; Rayón Encinas, E.; Ferrer, N.; Espiell, F.; Segarra, M. (2014). Hardness of FRHC-Cu determined by statistical analysis. Journal of Materials Engineering and Performance. 23(2):949-1059. doi:10.1007/s11665-013-0770-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11665-013-0770-1 es_ES
dc.description.upvformatpinicio 949 es_ES
dc.description.upvformatpfin 1059 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 253520
dc.identifier.eissn 1544-1024
dc.description.references A. Esparducer, M.A. Fernandez, M. Segarra, J.M. Chimenos, and F. Espiell, Characterization of Fire-Refined Copper Recycled from Scrap, J. Mater. Sci., 1999, 34, p 4239–4244 es_ES
dc.description.references http://www.lfl.es/esp/default.asp . Accessed on 27 Dec 2012 es_ES
dc.description.references http://www.copper.org/ . Accessed on 27 Dec 2012 es_ES
dc.description.references M. Martínez, A.I. Fernández, M. Segarra, H. Xuriguera, F. Espiell, and N. Ferrer, Comparative Study of Electrical and Mechanical Properties of Fire-Refined and Electrolytically Refined Cold-Drawn Copper Wires, J. Mater. Sci., 2007, 42, p 7745–7749 es_ES
dc.description.references L.E. Murr, Correlating Impact Related Residual Microstructures Through 2D Computer Simulations and Microindentation Hardness Mapping: Review, Mat. Sci. Technol., 2012, 28, p 1108–1126 es_ES
dc.description.references Armstrong, R.W., Elban, W.L., and Walley, S.M. Elastic, Plastic, Cracking Aspects of the Hardness of Materials. Int. J. Mod. Phys. B., 2013, 27(8), p 1330004 (79 pp). doi: 10.1142/S0217979213300041 es_ES
dc.description.references M.F. Doerner and W.D. Nix, A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res., 1986, 1, p 601–609 es_ES
dc.description.references G.M. Pharr and W.C. Oliver, Measurement of Thin Film Mechanical Properties Using Nanoindentation, MRS Bull., 1992, 17, p 28–33 es_ES
dc.description.references M.F. Doerner, D.S. Gardner, and W.D. Nix, Plastic Properties of Thin Films on Substrates as Measured by Submicron Indentation Hardness and Substrate Curvatures Techniques, J. Mater. Res., 1986, 1, p 845–851 es_ES
dc.description.references D. Shuman, A. Costa, and M. Andrade, Calculating the Elastic Modulus from Nanoindentation and Microindentation Reload Curves, Mater. Charact., 2007, 58(4), p 380–389 es_ES
dc.description.references M. Magnuson, M. Mattesini, C. Li, C. Höglund, M. Beckers, L. Hultman, and O. Eriksson, Bonding Mechanism in the Nitrides Ti2AlN and TiN: An Experimental and Theoretical Investigation, Phys. Rev. B, 2007, 76, p 195127/1–195127/9 es_ES
dc.description.references K.W. McElhaney, J.J. Vlassak, and W.D. Nix, Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sending Indentation Experiments, J. Mater. Res., 1998, 13, p 1300–1306 es_ES
dc.description.references W.D. Callister, Jr., Introduccion a la Ciencia e Ingenieria de los Materiales, Ed. Reverté S.A, Barcelona, 2005 es_ES
dc.description.references A. Esparducer, M. Segarra, F. Espiell, M. Garcia, and O. Guixà, Effects of Pre-heating Treatment on the Annealing Behaviour of Cold-Drawn Fire-Refined Coppers, J. Mater. Sci., 2001, 36, p 241–245 es_ES
dc.description.references D.L. Joslin and W.C. Oliver, A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests, J. Mater. Res., 1990, 5, p 123–126 es_ES
dc.description.references W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583 es_ES
dc.description.references J.S. Field and M.V. Swain, A Simple Predictive Model for Spherical Indentation, J. Mater. Res., 1993, 8, p 297–306 es_ES
dc.description.references W.C. Oliver and G.M. Pharr, Review: Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20 es_ES
dc.description.references G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. & Eng. A., 1998, 253, p 151–159 es_ES
dc.description.references J.L. Hay and G.M. Pharr, Instrumented Indentation Testing, ASM Handbook, 2000, 8, p 232–243 es_ES
dc.description.references S. Suresh, T.G. Nieh, and B.W. Choi, Nano-indentation of Copper Thin Films on Silicon Substrates, Scr. Mater., 1999, 41, p 951–957 es_ES
dc.description.references A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and Continuous Deformation During Nanoindentation of Thin Films, Acta Mater., 2000, 48, p 2277–2295 es_ES
dc.description.references J. Chen, W. Wang, L.H. Qian, and K. Lu, Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scr. Mater., 2003, 49, pp. 645-650; 48, pp. 2277-2295 es_ES
dc.description.references G. Constantinides, F.J. Ulm, and K. Van Vliet, On the use of nanoindentation for cementitious materials, Mater. Struct., 2003, 36, p 191–196 es_ES
dc.description.references G. Constantinides and F.J. Ulm, The nanogranular nature of C-S-H, J. Mech. Phys. Sol., 2006, 55, p 679–690 es_ES
dc.description.references G. Constantinides, K.S. Ravi Chandran, F.J. Ulm, and K. Van Vliet, Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng., A, 2006, 430, p 189–202 es_ES
dc.description.references N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping The Mechanical Properties of Complex Surfaces, J. Mater. Res., 2009, 24(3), p 679–690 es_ES
dc.description.references V. Canseco, J.J. Roa, E. Rayón, A.I. Fernandez, and E. Palomo, Mechanical Characterization at Nanometric Scale for Heterogeneous Graphite-Salt Phase Change Materials with a Statistical Approach, Ceram. Inter., 2012, 38(1), p 401–409 es_ES
dc.description.references F.J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz, Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale, J. Am. Ceram. Soc., 2007, 90, p 2677–2692 es_ES
dc.description.references Y. Zhang, N.R. Tao, and K. Lu, Mechanical Properties and Rolling Behaviours of Nano-Grained Copper with Embedded Nano-twin Bundles, Acta Mater., 2008, 56, p 2429–2440 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem