- -

Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Beltrán, José es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author Song, Wenlong es_ES
dc.contributor.author Mano, Joao F es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2015-07-24T10:42:03Z
dc.date.available 2015-07-24T10:42:03Z
dc.date.issued 2011
dc.identifier.issn 1744-683X
dc.identifier.uri http://hdl.handle.net/10251/53707
dc.description.abstract Protein adsorption and cellular behavior depend strongly on the wettability of substrates. Such studies are scarce for surfaces exhibiting extreme values of contact angles. Fibronectin (FN) adsorption and adhesion of MC3T3-E1 cells were investigated on superhydrophobic polystyrene (SH-PS) surfaces and compared with the corresponding smooth polystyrene (PS) substrate and the control glass. The FN surface density was lower on the SH-PS than on PS, and the adsorbed protein showed altered conformation of cell adhesion domains, as obtained by ELISA with monoclonal antibodies. Cell adhesion occurred on the SH-PS without the formation of mature focal adhesions, as assessed by immunofluorescence for vinculin, talin and paxillin. Correspondingly, the development of the actin cytoskeleton was delayed and without the presence of defined F-actin fibers. FAK phosphorylation was reduced on SH-PS, as compared with PS and the control glass. Also, cell contractility was diminished on the SH-PS as revealed by phosphorylation of myosin light chain (pMLC). Likewise, FN reorganization and secretion were impaired on the superhydrophobic surfaces. Cell proliferation was significantly lower in SH-PS as compared with PS up to 21 days of culture. © 2011 The Royal Society of Chemistry. es_ES
dc.description.sponsorship The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Soft Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Actin cytoskeleton es_ES
dc.subject Cellular behaviors es_ES
dc.subject Extreme value es_ES
dc.subject F-actin fibers es_ES
dc.subject Fibronectin adsorption es_ES
dc.subject Focal adhesions es_ES
dc.subject MC3T3-E1 cell es_ES
dc.subject Myosin light chains es_ES
dc.subject Paxillin es_ES
dc.subject Protein adsorption es_ES
dc.subject Super-hydrophobic surfaces es_ES
dc.subject Superhydrophobic es_ES
dc.subject Superhydrophobicity es_ES
dc.subject Surface density es_ES
dc.subject Vinculin es_ES
dc.subject Adhesion es_ES
dc.subject Adsorption es_ES
dc.subject Cell adhesion es_ES
dc.subject Cell proliferation es_ES
dc.subject Cells es_ES
dc.subject Contact angle es_ES
dc.subject Glass es_ES
dc.subject Hydrophobicity es_ES
dc.subject Monoclonal antibodies es_ES
dc.subject Phosphorylation es_ES
dc.subject Polystyrenes es_ES
dc.subject Proteins es_ES
dc.subject Substrates es_ES
dc.subject Surfaces es_ES
dc.subject Cell culture es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c1sm06102j
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ballester Beltrán, J.; Rico Tortosa, PM.; Moratal Pérez, D.; Song, W.; Mano, JF.; Salmerón Sánchez, M. (2011). Role of superhydrophobicity in the biological activity of fibronectin at the cell¿material interface. Soft Matter. 7(22):10803-10811. https://doi.org/10.1039/c1sm06102j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/ 10.1039/c1sm06102j es_ES
dc.description.upvformatpinicio 10803 es_ES
dc.description.upvformatpfin 10811 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 209135
dc.identifier.eissn 1744-6848
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Conselleria de Sanitat Universal i Salut Pública de la Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references Michiardi, A., Aparicio, C., Ratner, B. D., Planell, J. A., & Gil, J. (2007). The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials, 28(4), 586-594. doi:10.1016/j.biomaterials.2006.09.040 es_ES
dc.description.references Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013 es_ES
dc.description.references Lim, J. Y., Shaughnessy, M. C., Zhou, Z., Noh, H., Vogler, E. A., & Donahue, H. J. (2008). Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29(12), 1776-1784. doi:10.1016/j.biomaterials.2007.12.026 es_ES
dc.description.references Prime, K. L., & Whitesides, G. M. (1993). Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society, 115(23), 10714-10721. doi:10.1021/ja00076a032 es_ES
dc.description.references Sun, T., Tan, H., Han, D., Fu, Q., & Jiang, L. (2005). No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small, 1(10), 959-963. doi:10.1002/smll.200500095 es_ES
dc.description.references Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374 es_ES
dc.description.references Lee, H. J., & Michielsen, S. (2006). Preparation of a superhydrophobic rough surface. Journal of Polymer Science Part B: Polymer Physics, 45(3), 253-261. doi:10.1002/polb.21036 es_ES
dc.description.references Yoon, Y. I., Moon, H. S., Lyoo, W. S., Lee, T. S., & Park, W. H. (2008). Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 320(1), 91-95. doi:10.1016/j.jcis.2008.01.029 es_ES
dc.description.references Yuan, Z., Chen, H., Tang, J., Chen, X., Zhao, D., & Wang, Z. (2007). Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surface and Coatings Technology, 201(16-17), 7138-7142. doi:10.1016/j.surfcoat.2007.01.021 es_ES
dc.description.references Fresnais, J., Chapel, J. P., & Poncin-Epaillard, F. (2006). Synthesis of transparent superhydrophobic polyethylene surfaces. Surface and Coatings Technology, 200(18-19), 5296-5305. doi:10.1016/j.surfcoat.2005.06.022 es_ES
dc.description.references Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066 es_ES
dc.description.references Lee, Y., Park, S.-H., Kim, K.-B., & Lee, J.-K. (2007). Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces. Advanced Materials, 19(17), 2330-2335. doi:10.1002/adma.200700820 es_ES
dc.description.references Sun, T., Feng, L., Gao, X., & Jiang, L. (2005). Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 38(8), 644-652. doi:10.1021/ar040224c es_ES
dc.description.references Zhu, Y., Zhang, J., Zheng, Y., Huang, Z., Feng, L., & Jiang, L. (2006). Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments. Advanced Functional Materials, 16(4), 568-574. doi:10.1002/adfm.200500624 es_ES
dc.description.references Wang, S., Feng, L., & Jiang, L. (2006). One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Advanced Materials, 18(6), 767-770. doi:10.1002/adma.200501794 es_ES
dc.description.references Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428(6982), 487-492. doi:10.1038/nature02388 es_ES
dc.description.references Peppas, N., & Langer, R. (1994). New challenges in biomaterials. Science, 263(5154), 1715-1720. doi:10.1126/science.8134835 es_ES
dc.description.references Banerjee, R., Nageswari, K., & Puniyani, R. R. (1997). Hematological Aspects of Biocompatibility-Review Article. Journal of Biomaterials Applications, 12(1), 57-76. doi:10.1177/088532829701200104 es_ES
dc.description.references Song, W., Veiga, D. D., Custódio, C. A., & Mano, J. F. (2009). Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 21(18), 1830-1834. doi:10.1002/adma.200803680 es_ES
dc.description.references Alves, N. M., Shi, J., Oramas, E., Santos, J. L., Tomás, H., & Mano, J. F. (2009). Bioinspired superhydrophobic poly(L-lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research Part A, 91A(2), 480-488. doi:10.1002/jbm.a.32210 es_ES
dc.description.references Ishizaki, T., Saito, N., & Takai, O. (2010). Correlation of Cell Adhesive Behaviors on Superhydrophobic, Superhydrophilic, and Micropatterned Superhydrophobic/Superhydrophilic Surfaces to Their Surface Chemistry. Langmuir, 26(11), 8147-8154. doi:10.1021/la904447c es_ES
dc.description.references Anselme, K. (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7), 667-681. doi:10.1016/s0142-9612(99)00242-2 es_ES
dc.description.references Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 es_ES
dc.description.references HYNES, R. (1987). Integrins: A family of cell surface receptors. Cell, 48(4), 549-554. doi:10.1016/0092-8674(87)90233-9 es_ES
dc.description.references Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 es_ES
dc.description.references Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1 es_ES
dc.description.references Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j es_ES
dc.description.references Oliveira, N. M., Neto, A. I., Song, W., & Mano, J. F. (2010). Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface. Applied Physics Express, 3(8), 085205. doi:10.1143/apex.3.085205 es_ES
dc.description.references Feng, X. J., & Jiang, L. (2006). Design and Creation of Superwetting/Antiwetting Surfaces. Advanced Materials, 18(23), 3063-3078. doi:10.1002/adma.200501961 es_ES
dc.description.references Erbil, H. Y. ;l. &i. ;r&i. ;. (2003). Transformation of a Simple Plastic into a Superhydrophobic Surface. Science, 299(5611), 1377-1380. doi:10.1126/science.1078365 es_ES
dc.description.references Shi, J., Alves, N. M., & Mano, J. F. (2008). Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration & Biomimetics, 3(3), 034003. doi:10.1088/1748-3182/3/3/034003 es_ES
dc.description.references Oliveira, S. M., Song, W., Alves, N. M., & Mano, J. F. (2011). Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 7(19), 8932. doi:10.1039/c1sm05943b es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Yao, X., Song, Y., & Jiang, L. (2010). Applications of Bio-Inspired Special Wettable Surfaces. Advanced Materials, 23(6), 719-734. doi:10.1002/adma.201002689 es_ES
dc.description.references Matsumura, H., Kawasaki, K., & Kambara, M. (1997). Wetting of protein-adsorbed solid surfaces studied by a dynamic method. Colloids and Surfaces B: Biointerfaces, 8(4-5), 181-188. doi:10.1016/s0927-7765(96)01325-2 es_ES
dc.description.references Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039 es_ES
dc.description.references McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h es_ES
dc.description.references SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 es_ES
dc.description.references Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059 es_ES
dc.description.references Redick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. The Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521 es_ES
dc.description.references Mao, C., Qiu, Y., Sang, H., Mei, H., Zhu, A., Shen, J., & Lin, S. (2004). Various approaches to modify biomaterial surfaces for improving hemocompatibility. Advances in Colloid and Interface Science, 110(1-2), 5-17. doi:10.1016/j.cis.2004.02.001 es_ES
dc.description.references Chinn, J. A., Horbett, T. A., & Ratner, B. D. (1991). Baboon Fibrinogen Adsorption and Platelet Adhesion to Polymeric Materials. Thrombosis and Haemostasis, 65(05), 608-617. doi:10.1055/s-0038-1648198 es_ES
dc.description.references García, A. J., Schwarzbauer, J. E., & Boettiger, D. (2002). Distinct Activation States of α5β1 Integrin Show Differential Binding to RGD and Synergy Domains of Fibronectin†. Biochemistry, 41(29), 9063-9069. doi:10.1021/bi025752f es_ES
dc.description.references González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021 es_ES
dc.description.references Martínez, E. C., Hernández, J. C. R., Machado, M., Mano, J. F., Ribelles, J. L. G., Pradas, M. M., & Sánchez, M. S. (2008). Human Chondrocyte Morphology, Its Dedifferentiation, and Fibronectin Conformation on Different PLLA Microtopographies. Tissue Engineering Part A, 14(10), 1751-1762. doi:10.1089/ten.tea.2007.0270 es_ES
dc.description.references Scopelliti, P. E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., … Milani, P. (2010). The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE, 5(7), e11862. doi:10.1371/journal.pone.0011862 es_ES
dc.description.references Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F. J., Planell, J. A., & Altankov, G. (2010). Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy. Acta Biomaterialia, 6(1), 291-301. doi:10.1016/j.actbio.2009.07.030 es_ES
dc.description.references Ulmer, J., Geiger, B., & Spatz, J. P. (2008). Force-induced fibronectin fibrillogenesis in vitro. Soft Matter, 4(10), 1998. doi:10.1039/b808020h es_ES
dc.description.references Welch, M. D., & Mullins, R. D. (2002). Cellular Control of Actin Nucleation. Annual Review of Cell and Developmental Biology, 18(1), 247-288. doi:10.1146/annurev.cellbio.18.040202.112133 es_ES
dc.description.references Curtis, A., & Wilkinson, C. (1997). Topographical control of cells. Biomaterials, 18(24), 1573-1583. doi:10.1016/s0142-9612(97)00144-0 es_ES
dc.description.references Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j es_ES
dc.description.references Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D., & Boyan, B. (2005). Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 26(14), 1837-1847. doi:10.1016/j.biomaterials.2004.06.035 es_ES
dc.description.references Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013 es_ES
dc.description.references llić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., … Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539-544. doi:10.1038/377539a0 es_ES
dc.description.references Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. The Journal of Cell Biology, 134(3), 793-799. doi:10.1083/jcb.134.3.793 es_ES
dc.description.references Zhao, J.-H., Reiske, H., & Guan, J.-L. (1998). Regulation of the Cell Cycle by Focal Adhesion Kinase. The Journal of Cell Biology, 143(7), 1997-2008. doi:10.1083/jcb.143.7.1997 es_ES
dc.description.references Thannickal, V. J., Lee, D. Y., White, E. S., Cui, Z., Larios, J. M., Chacon, R., … Thomas, P. E. (2003). Myofibroblast Differentiation by Transforming Growth Factor-β1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 278(14), 12384-12389. doi:10.1074/jbc.m208544200 es_ES
dc.description.references Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14(3), 1680-1688. doi:10.1128/mcb.14.3.1680 es_ES
dc.description.references Reiske, H. R., Kao, S.-C., Cary, L. A., Guan, J.-L., Lai, J.-F., & Chen, H.-C. (1999). Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 274(18), 12361-12366. doi:10.1074/jbc.274.18.12361 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062 es_ES
dc.description.references Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076 es_ES
dc.description.references Dumbauld, D. W., Michael, K. E., Hanks, S. K., & García, A. J. (2010). Focal adhesion kinase-dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biology of the Cell, 102(4), 203-213. doi:10.1042/bc20090104 es_ES
dc.description.references Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524 es_ES
dc.description.references Kato, M., & Mrksich, M. (2004). Using Model Substrates To Study the Dependence of Focal Adhesion Formation on the Affinity of Integrin−Ligand Complexes†. Biochemistry, 43(10), 2699-2707. doi:10.1021/bi0352670 es_ES
dc.description.references Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 437(7059), 640-647. doi:10.1038/nature04162 es_ES
dc.description.references Lins, L., & Brasseur, R. (1995). The hydrophobic effect in protein folding. The FASEB Journal, 9(7), 535-540. doi:10.1096/fasebj.9.7.7737462 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem