Mostrar el registro sencillo del ítem
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Rodriguez, Alberto | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2015-09-09T12:03:11Z | |
dc.date.available | 2015-09-09T12:03:11Z | |
dc.date.issued | 2014-08-14 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.uri | http://hdl.handle.net/10251/54436 | |
dc.description.abstract | Missing traces in ground penetrating radar (GPR) B-scans (radargrams) may appear because of limited scanning resolution, failures during the acquisition process or the lack of accessibility to some areas under test. Four statistical interpolation methods for recovering these missing traces are compared in this paper: Kriging, Wiener structures, Splines and the expectation assuming an independent component analyzers mixture model (E-ICAMM). Kriging is an adaptation to the spatial context of the linear least mean squared error estimator. Wiener structures improve the linear estimator by including a nonlinear scalar function. Splines are a commonly used method to interpolate GPR traces. This consists of piecewise-defined polynomial curves that are smooth at the connections (or knots) between pieces. E-ICAMM is a new method proposed in this paper. E-ICAMM consists of computing the optimum nonlinear estimator (the conditional mean) assuming a non-Gaussian mixture model for the joint probability density in the observation space. The proposed methods were tested on a set of simulated data and a set of real data, and four performance indicators were computed. Real data were obtained by GPR inspection of two replicas of historical walls. Results show the superiority of E-ICAMM in comparison with the other three methods in the application of reconstructing incomplete B-scans. | es_ES |
dc.description.sponsorship | This research was supported by Universitat Politecnica de Valencia (Vice-Rectorate for Research, Innovation and Transfer) under Grant SP20120646; Generalitat Valenciana under Grants PROMETEOII/2014/032, GV/2014/034 (Emergent Research Groups), and ISIC/2012/006; and the Spanish Administration and European Union FEDER Programme under Grant TEC2011-23403. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Remote Sensing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | GPR | es_ES |
dc.subject | Independent component analysis | es_ES |
dc.subject | Interpolation | es_ES |
dc.subject | Missing data | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | On Recovering Missing Ground Penetrating Radar Traces by Statistical Interpolation Methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/rs6087546 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120646/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2014%2F034/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F006/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-23403/ES/ALGORITMOS PARA EL ANALISIS DE MODALIDAD DE SEÑAL: APLICACION EN EL PROCESADO AVANZADO DE SEÑALES ACUSTICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Safont Armero, G.; Salazar Afanador, A.; Rodriguez, A.; Vergara Domínguez, L. (2014). On Recovering Missing Ground Penetrating Radar Traces by Statistical Interpolation Methods. Remote Sensing. 6(8):7546-7565. https://doi.org/10.3390/rs6087546 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/rs6087546 | es_ES |
dc.description.upvformatpinicio | 7546 | es_ES |
dc.description.upvformatpfin | 7565 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 278545 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Le Bastard, C., Baltazart, V., Yide Wang, & Saillard, J. (2007). Thin-Pavement Thickness Estimation Using GPR With High-Resolution and Superresolution Methods. IEEE Transactions on Geoscience and Remote Sensing, 45(8), 2511-2519. doi:10.1109/tgrs.2007.900982 | es_ES |
dc.description.references | Schafer, R. W., & Rabiner, L. R. (1973). A digital signal processing approach to interpolation. Proceedings of the IEEE, 61(6), 692-702. doi:10.1109/proc.1973.9150 | es_ES |
dc.description.references | Salazar, A., Vergara, L., Serrano, A., & Igual, J. (2010). A general procedure for learning mixtures of independent component analyzers. Pattern Recognition, 43(1), 69-85. doi:10.1016/j.patcog.2009.05.013 | es_ES |
dc.description.references | Vincent, E., Gribonval, R., & Fevotte, C. (2006). Performance measurement in blind audio source separation. IEEE Transactions on Audio, Speech and Language Processing, 14(4), 1462-1469. doi:10.1109/tsa.2005.858005 | es_ES |
dc.description.references | Kullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86. doi:10.1214/aoms/1177729694 | es_ES |
dc.description.references | Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861 | es_ES |
dc.description.references | Raghavan, R. S. (1991). A model for spatially correlated radar clutter. IEEE Transactions on Aerospace and Electronic Systems, 27(2), 268-275. doi:10.1109/7.78302 | es_ES |
dc.description.references | Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic Independent Component Analysis. Neural Computation, 13(7), 1527-1558. doi:10.1162/089976601750264992 | es_ES |
dc.description.references | Salazar, A., Safont, G., & Vergara, L. (2011). Application of Independent Component Analysis for Evaluation of Ashlar Masonry Walls. Lecture Notes in Computer Science, 469-476. doi:10.1007/978-3-642-21498-1_59 | es_ES |