- -

The range of the restriction map for a multiplicity variety in Hörmander algebras of entire functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The range of the restriction map for a multiplicity variety in Hörmander algebras of entire functions

Show full item record

Bonet Solves, JA.; Fernandez Rosell, C. (2014). The range of the restriction map for a multiplicity variety in Hörmander algebras of entire functions. Mediterranean Journal of Mathematics. 11(2):643-652. doi:10.1007/s00009-013-0318-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55081

Files in this item

Item Metadata

Title: The range of the restriction map for a multiplicity variety in Hörmander algebras of entire functions
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
[EN] Characterizations of interpolating multiplicity varieties for Hörmander algebras Ap(C) and A0 p(C) of entire functions were obtained by Berenstein and Li (J Geom Anal 5(1):1–48, 1995) and Berenstein et al. (Can J Math ...[+]
Subjects: Discrete interpolating varieties , Entire functions , Growth conditions , Weighted spaces of entire functions
Copyrigths: Reserva de todos los derechos
Source:
Mediterranean Journal of Mathematics. (issn: 1660-5446 ) (eissn: 1660-5454 )
DOI: 10.1007/s00009-013-0318-5
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00009-013-0318-5
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s00009-013-0318-5
Thanks:
This research was partially supported by MEC and FEDER Project MTM2010-15200.
Type: Artículo

References

Berenstein, C.A., Gay, R.: Complex variables. An Introduction. Graduate Texts in Mathematics, vol. 125. Springer, New York (1991)

Berenstein, C.A., Gay R.: Complex Analysis and Special Topics in Harmonic Analysis. Springer, New York (1995)

Berenstein C.A., Li B.Q.: Interpolating varieties for spaces of meromorphic functions. J. Geom. Anal. 5(1), 1–48 (1995) [+]
Berenstein, C.A., Gay, R.: Complex variables. An Introduction. Graduate Texts in Mathematics, vol. 125. Springer, New York (1991)

Berenstein, C.A., Gay R.: Complex Analysis and Special Topics in Harmonic Analysis. Springer, New York (1995)

Berenstein C.A., Li B.Q.: Interpolating varieties for spaces of meromorphic functions. J. Geom. Anal. 5(1), 1–48 (1995)

Berenstein C.A., Li B.Q., Vidras A.: Geometric characterization of interpolating varieties for the (FN)-space $${A^{0}_p}$$ of entire functions. Can. J. Math. 47(1), 28–43 (1995)

Berenstein C.A., Taylor B.A.: A new look at interpolation theory for entire functions of one variable. Adv. Math. 33(2), 109–143 (1979)

Bonet J., Galbis A.: The range of non-surjective convolution operators on Beurling spaces. Glasg. Math. J. 38(1), 125–135 (1996)

Bonet J., Galbis A., Momm S.: Nonradial Hörmander algebras of several variables and convolution operators. Trans. Am. Math. Soc. 353(6), 2275–2291 (2001)

Braun R.W.: Weighted algebras of entire functions in which each closed ideal admits two algebraic generators. Mich. Math. J. 34(3), 441–450 (1987)

Braun R.W., Meise R., Taylor B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990)

Buckley J., Massaneda X., Ortega-Cerdà J.: Traces of functions in Fock spaces on lattices of critical density. Bull. Lond. Math. Soc. 44(2), 222–240 (2012)

Hartmann A., Massaneda X.: On interpolating varieties for weighted spaces of entire functions. J. Geom. Anal. 10(4), 683–696 (2000)

Massaneda X., Ortega-Cerdà J., Ounaïes M.: A geometric characterization of interpolation in $${\hat{\mathcal{E}}'(\mathbb{R})}$$ . Trans. Am. Math. Soc. 358, 3459–3472 (2006)

Massaneda, X., Ortega-Cerdà, J., Ounaïes, M.: Traces of Hörmander algebras on discrete sequences. In: Analysis and mathematical physics. Trends in Mathematics, pp. 397–408. Birkhäuser, Basel (2009)

Meise R.: Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math. 363, 59–95 (1985)

Meise R., Taylor B.A.: Sequence space representations for (FN)-algebras of entire functions modulo closed ideals. Studia Math. 85(3), 203–227 (1987)

Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors

Ounaïes M.: Geometric conditions for interpolation in weighted spaces of entire functions. J. Geom. Anal. 17(4), 701–715 (2007)

Ounaïes M.: Interpolation by entire functions with growth conditions. Mich. Math. J. 56(1), 155–171 (2008)

Ounaïes, M.: Interpolation dans les algèbres de Hörmander. Université Louis Pasteur. Institut de Recherche Mathématique Avancée (IRMA), Strasbourg (2008)

Stromberg, K.R.: Introduction to classical real analysis. Wadsworth International, Belmont, California. Wadsworth International Mathematics Series (1981)

Zioło P.: Geometric characterization of interpolation in the space of Fourier-Laplace transforms of ultradistributions of Roumieu type. Collect. Math. 62(2), 161–172 (2011)

[-]

This item appears in the following Collection(s)

Show full item record