- -

Kothe dual of Banach lattices generated by vector measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kothe dual of Banach lattices generated by vector measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mastylo, Mieczyslaw es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2015-09-29T11:40:43Z
dc.date.available 2015-09-29T11:40:43Z
dc.date.issued 2014-04
dc.identifier.issn 0026-9255
dc.identifier.uri http://hdl.handle.net/10251/55264
dc.description.abstract We study the Kothe dual spaces of Banach function lattices generated by abstract methods having roots in the theory of interpolation spaces. We apply these results to Banach spaces of integrable functions with respect to Banach space valued countably additive vector measures. As an application we derive a description of the Banach dual of a large class of these spaces, including Orlicz spaces of integrable functions with respect to vector measures es_ES
dc.description.sponsorship The first author was supported by the Foundation for Polish Science (FNP). The second author was supported by the Ministerio de Economia y Competitividad (Spain) under Grant #MTM2012-36740-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Monatshefte fur Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Banach lattice es_ES
dc.subject Vector measure es_ES
dc.subject Integration es_ES
dc.subject Kothe dual space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Kothe dual of Banach lattices generated by vector measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-013-0560-8
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Mastylo, M.; Sánchez Pérez, EA. (2014). Kothe dual of Banach lattices generated by vector measures. Monatshefte fur Mathematik. 173(4):541-557. https://doi.org/10.1007/s00605-013-0560-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00605-013-0560-8 es_ES
dc.description.upvformatpinicio 541 es_ES
dc.description.upvformatpfin 557 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 173 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 279114 es_ES
dc.contributor.funder Foundation for Polish Science
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Aronszajn, N., Gagliardo, E.: Interpolation spaces and interpolation methods. Ann. Mat. Pura. Appl. 68, 51–118 (1965) es_ES
dc.description.references Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Canad. J. Math. 7, 289–305 (1955) es_ES
dc.description.references Brudnyi, Yu.A., Krugljak, N.Ya.: Interpolation functors and interpolation spaces $$I$$ I . North-Holland, Amsterdam (1991) es_ES
dc.description.references Curbera, G.P.: Operators into $$L^1$$ L 1 of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992) es_ES
dc.description.references Curbera, G.P., Ricker, W.J.: The Fatou property in $$p$$ p -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007) es_ES
dc.description.references Delgado, O.: Banach function subspaces of $$L^1$$ L 1 of a vector measure and related Orlicz spaces. Indag. Math. 15(4), 485–495 (2004) es_ES
dc.description.references Diestel, J., Jr., Uhl, J.J.: Vector measures, Amer. Math. Soc. Surveys 15, Providence, R.I. (1977) es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sánchez-Pérez, E.A.: Spaces of $$p$$ p -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006) es_ES
dc.description.references Ferrando, I., Rodríguez, J.: The weak topology on $$L_p$$ L p of a vector measure. Topol. Appl. 155, 1439–1444 (2008) es_ES
dc.description.references Ferrando, I., Sánchez Pérez, E.A.: Tensor product representation of the (pre)dual of the $$L_p$$ L p -space of a vector measure. J. Aust. Math. Soc. 87, 211–225 (2009) es_ES
dc.description.references Galaz-Fontes, F.: The dual space of $$L^p$$ L p of a vector measure. Positivity 14(4), 715–729 (2010) es_ES
dc.description.references Kamińska, A.: Indices, convexity and concavity in Musielak-Orlicz spaces, dedicated to Julian Musielak. Funct. Approx. Comment. Math. 26, 67–84 (1998) es_ES
dc.description.references Kantorovich, L.V., Akilov, G.P.: Functional analysis, 2nd edn. Pergamon Press, New York (1982) es_ES
dc.description.references Krein, S.G., Petunin, Yu.I., Semenov, E.M.: Interpolation of linear operators. In: Translations of mathematical monographs, 54. American Mathematical Society, Providence, R.I., (1982) es_ES
dc.description.references Lewis, D.R.: Integration with respect to vector measures. Pacific. J. Math. 33, 157–165 (1970) es_ES
dc.description.references Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 583–599 (1973) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979) es_ES
dc.description.references Lozanovskii, G.Ya.: On some Banach lattices, (Russian). Sibirsk. Mat. Z. 10, 419–430 (1969) es_ES
dc.description.references Musielak, J.: Orlicz spaces and modular spaces. In: Lecture Notes in Math. 1034, Springer-Verlag, Berlin (1983) es_ES
dc.description.references Okada, S.: The dual space of $$L^1(\mu )$$ L 1 ( μ ) of a vector measure $$\mu $$ μ . J. Math. Anal. Appl. 177, 583–599 (1993) es_ES
dc.description.references Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces, operator theory. Adv. Appl., vol. 180, Birkhäuser, Basel (2008) es_ES
dc.description.references Rao, M.M., Zen, Z.D.: Applications of Orlicz spaces. Marcel Dekker, Inc., New York (2002) es_ES
dc.description.references Rivera, M.J.: Orlicz spaces of integrable functions with respect to vector-valued measures. Rocky Mt. J. Math. 38(2), 619–637 (2008) es_ES
dc.description.references Sánchez Pérez, E.A.: Compactness arguments for spaces of $$p$$ p -integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Ill. J. Math. 45(3), 907–923 (2001) es_ES
dc.description.references Sánchez Pérez, E.A.: Vector measure duality and tensor product representation of $$L_p$$ L p spaces of vector measures. Proc. Amer. Math. Soc. 132, 3319–3326 (2004) es_ES
dc.description.references Zaanen, A.C.: Integration. North Holland, Amsterdam (1967) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem