Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vindel Cañas, Pura | es_ES |
dc.date.accessioned | 2015-09-29T12:27:28Z | |
dc.date.available | 2015-09-29T12:27:28Z | |
dc.date.issued | 2013-10-01 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/55277 | |
dc.description.abstract | The choice of a member of a parametric family of iterative methods is not always easy. The family of Chebyshev-Halley schemes is a good example of it. The analysis of bifurcation points of this family allows us to define a real interval in which there exist several problematic behaviours: attracting points that become doubled, other ones that become periodic orbits, etc. These aspects should be avoided in an iterative procedure, so it is important to determine the regions where this conduct takes place. In this paper, we obtain that this family admits attractive 2-cycles in two different intervals, for real values of the parameter. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis Ltd | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Numerical methods | es_ES |
dc.subject | Chebyshev-Halley methods | es_ES |
dc.subject | Bifurcations | es_ES |
dc.subject | Dynamics of numerical method | es_ES |
dc.subject | Period-doubling bifurcation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Period-doubling bifurcations in the family of Chebyshev-Halley type methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2012.745518 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel Cañas, P. (2013). Period-doubling bifurcations in the family of Chebyshev-Halley type methods. International Journal of Computer Mathematics. 90(10):2061-2071. doi:10.1080/00207160.2012.745518 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2012.745518 | es_ES |
dc.description.upvformatpinicio | 2061 | es_ES |
dc.description.upvformatpfin | 2071 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 257740 | es_ES |
dc.identifier.eissn | 1029-0265 | |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2006). A construction of attracting periodic orbits for some classical third-order iterative methods. Journal of Computational and Applied Mathematics, 189(1-2), 22-33. doi:10.1016/j.cam.2005.03.049 | es_ES |
dc.description.references | Amat, S., Busquier, S., & Plaza, S. (2007). On the dynamics of a family of third-order iterative functions. The ANZIAM Journal, 48(3), 343-359. doi:10.1017/s1446181100003539 | es_ES |
dc.description.references | Amat, S., Bermúdez, C., Busquier, S., & Plaza, S. (2008). On the dynamics of the Euler iterative function. Applied Mathematics and Computation, 197(2), 725-732. doi:10.1016/j.amc.2007.08.086 | es_ES |
dc.description.references | Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 | es_ES |
dc.description.references | Devaney, R. L. (1999). The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence. The American Mathematical Monthly, 106(4), 289. doi:10.2307/2589552 | es_ES |
dc.description.references | Gutiérrez, J. M., Hernández, M. A., & Romero, N. (2010). Dynamics of a new family of iterative processes for quadratic polynomials. Journal of Computational and Applied Mathematics, 233(10), 2688-2695. doi:10.1016/j.cam.2009.11.017 | es_ES |
dc.description.references | Honorato, G., Plaza, S., & Romero, N. (2011). Dynamics of a higher-order family of iterative methods. Journal of Complexity, 27(2), 221-229. doi:10.1016/j.jco.2010.10.005 | es_ES |
dc.description.references | Kneisl, K. (2001). Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(2), 359-370. doi:10.1063/1.1368137 | es_ES |
dc.description.references | Plaza, S., & Romero, N. (2011). Attracting cycles for the relaxed Newton’s method. Journal of Computational and Applied Mathematics, 235(10), 3238-3244. doi:10.1016/j.cam.2011.01.010 | es_ES |
dc.description.references | Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 | es_ES |