Mostrar el registro sencillo del ítem
dc.contributor.author | Stroeve, Pieter | es_ES |
dc.contributor.author | Rahman, Masoud | es_ES |
dc.contributor.author | Naidu, Lekkala Dev | es_ES |
dc.contributor.author | Chu, Gilbert | es_ES |
dc.contributor.author | Mahmoudi, Morteza | es_ES |
dc.contributor.author | Ramirez Hoyos, Patricio | es_ES |
dc.contributor.author | Mafé, Salvador | es_ES |
dc.date.accessioned | 2015-09-30T15:47:05Z | |
dc.date.available | 2015-09-30T15:47:05Z | |
dc.date.issued | 2014-10-21 | |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/10251/55358 | |
dc.description.abstract | [EN] The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. The effects of the solution pH and the membrane pore diameter on the pore permeability allow quantifying the electrostatic interaction between the chargedpore and the protein. Because of the large screening Debye length, both surface and bulk diffusion occur simultaneously. By increasing the pore diameter, the permeability tends to the bulk self-diffusion coefficient for each protein. By decreasing the pore diameter, the charges on the pore surface electrostatically hinder the transport even at the isoelectric point of the protein. Surprisingly, even at pore sizes 100 times larger than the protein, the electrostatic hindrance still plays a major role in the transport. The experimental data are qualitatively explained using a two-region model for the membrane pore and approximated equations for the pH dependence of the protein and pore charges. The experimental and theoretical results should be useful for designing protein separation processes based on nanoporous charged membranes. | es_ES |
dc.description.sponsorship | This work was supported by a grant from the University of California Office of the President UCOP Lab Fee Program. P.R. and S.M. acknowledge the financial support from the Ministry of Economy and Competitiveness of Spain and FEDER (project PROMAT2012-32084) and the Generalitat Valenciana (project PROMETEO/GV/0069). We thank Mr Victor Awad and Mr Linh Doan for laboratory assistance. We also thank an anonymous referee for valuable comments. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bovine serum albumin | es_ES |
dc.subject | Self assembled monolayers | es_ES |
dc.subject | Ultrafiltration membranes | es_ES |
dc.subject | Microporous membranes | es_ES |
dc.subject | Molecular transport | es_ES |
dc.subject | Aqueous solutions | es_ES |
dc.subject | Light scattering | es_ES |
dc.subject | Surface | es_ES |
dc.subject | PH | es_ES |
dc.subject | Hemoglobin | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Protein diffusion through charged nanopores with different radii at low ionic strength | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c4cp03198a | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Stroeve, P.; Rahman, M.; Naidu, LD.; Chu, G.; Mahmoudi, M.; Ramirez Hoyos, P.; Mafé, S. (2014). Protein diffusion through charged nanopores with different radii at low ionic strength. Physical Chemistry Chemical Physics. 16(39):21570-21576. https://doi.org/10.1039/c4cp03198a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4cp03198a | es_ES |
dc.description.upvformatpinicio | 21570 | es_ES |
dc.description.upvformatpfin | 21576 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 39 | es_ES |
dc.relation.senia | 281316 | es_ES |
dc.identifier.eissn | 1463-9084 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | University of California | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0 | es_ES |
dc.description.references | Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029 | es_ES |
dc.description.references | Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400h | es_ES |
dc.description.references | Burns, D. B., & Zydney, A. L. (2001). Contributions to electrostatic interactions on protein transport in membrane systems. AIChE Journal, 47(5), 1101-1114. doi:10.1002/aic.690470517 | es_ES |
dc.description.references | Chun, K.-Y., & Stroeve, P. (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653-4658. doi:10.1021/la011250b | es_ES |
dc.description.references | Osmanbeyoglu, H. U., Hur, T. B., & Kim, H. K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 343(1-2), 1-6. doi:10.1016/j.memsci.2009.07.027 | es_ES |
dc.description.references | Tanford, C., & Buzzell, J. G. (1956). The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. The Journal of Physical Chemistry, 60(2), 225-231. doi:10.1021/j150536a020 | es_ES |
dc.description.references | Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002 | es_ES |
dc.description.references | Ho, C.-C., & Zydney, A. L. (2001). Protein Fouling of Asymmetric and Composite Microfiltration Membranes. Industrial & Engineering Chemistry Research, 40(5), 1412-1421. doi:10.1021/ie000810j | es_ES |
dc.description.references | Ku, J.-R., & Stroeve, P. (2004). Protein Diffusion in Charged Nanotubes: «On−Off» Behavior of Molecular Transport. Langmuir, 20(5), 2030-2032. doi:10.1021/la0357662 | es_ES |
dc.description.references | Yu, S., Lee, S. B., Kang, M., & Martin, C. R. (2001). Size-Based Protein Separations in Poly(ethylene glycol)-Derivatized Gold Nanotubule Membranes. Nano Letters, 1(9), 495-498. doi:10.1021/nl010044l | es_ES |
dc.description.references | Yu, S., Lee, S. B., & Martin, C. R. (2003). Electrophoretic Protein Transport in Gold Nanotube Membranes. Analytical Chemistry, 75(6), 1239-1244. doi:10.1021/ac020711a | es_ES |
dc.description.references | Hou, Z., Abbott, N. L., & Stroeve, P. (2000). Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes. Langmuir, 16(5), 2401-2404. doi:10.1021/la991045k | es_ES |
dc.description.references | Böhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345. doi:10.1016/j.cplett.2006.12.068 | es_ES |
dc.description.references | Beretta, S., Chirico, G., Arosio, D., & Baldini, G. (1997). Role of Ionic Strength on Hemoglobin Interparticle Interactions and Subunit Dissociation from Light Scattering. Macromolecules, 30(25), 7849-7855. doi:10.1021/ma971137l | es_ES |
dc.description.references | Gaigalas, A. K., Hubbard, J. B., McCurley, M., & Woo, S. (1992). Diffusion of bovine serum albumin in aqueous solutions. The Journal of Physical Chemistry, 96(5), 2355-2359. doi:10.1021/j100184a063 | es_ES |
dc.description.references | LaGattuta, K. J., Sharma, V. S., Nicoli, D. F., & Kothari, B. K. (1981). Diffusion coefficients of hemoglobin by intensity fluctuation spectroscopy: effects of varying pH and ionic strength. Biophysical Journal, 33(1), 63-79. doi:10.1016/s0006-3495(81)84872-2 | es_ES |
dc.description.references | Mafé, S., Manzanares, J. A., & Ramirez, P. (2003). Modeling of surface vs. bulk ionic conductivity in fixed charge membranes. Phys. Chem. Chem. Phys., 5(2), 376-383. doi:10.1039/b209438j | es_ES |
dc.description.references | Biesheuvel, P. M., Stroeve, P., & Barneveld, P. A. (2004). Effect of Protein Adsorption and Ionic Strength on the Equilibrium Partition Coefficient of Ionizable Macromolecules in Charged Nanopores. The Journal of Physical Chemistry B, 108(45), 17660-17665. doi:10.1021/jp047913q | es_ES |
dc.description.references | Biesheuvel, P. M., & Wittemann, A. (2005). A Modified Box Model Including Charge Regulation for Protein Adsorption in a Spherical Polyelectrolyte Brush. The Journal of Physical Chemistry B, 109(9), 4209-4214. doi:10.1021/jp0452812 | es_ES |
dc.description.references | Keesom, W. ., Zelenka, R. ., & Radke, C. . (1988). A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. Journal of Colloid and Interface Science, 125(2), 575-585. doi:10.1016/0021-9797(88)90024-0 | es_ES |
dc.description.references | G. B. Benedek and F. M. H.Villars , Physics with illustrative examples from Medicine and Biology (Statistical Physics) , Springer-Verlag , Heidelberg , 2000 | es_ES |
dc.description.references | Arosio, D., Kwansa, H. E., Gering, H., Piszczek, G., & Bucci, E. (2001). Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Biopolymers, 63(1), 1-11. doi:10.1002/bip.1057 | es_ES |
dc.description.references | Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152(1), 21-32. doi:10.1016/s0021-9673(00)85330-3 | es_ES |
dc.description.references | Beck, R. E., & Schultz, J. S. (1970). Hindered Diffusion in Microporous Membranes with Known Pore Geometry. Science, 170(3964), 1302-1305. doi:10.1126/science.170.3964.1302 | es_ES |
dc.description.references | Burns, D. B., & Zydney, A. L. (1999). Effect of solution pH on protein transport through ultrafiltration membranes. Biotechnology and Bioengineering, 64(1), 27-37. doi:10.1002/(sici)1097-0290(19990705)64:1<27::aid-bit3>3.0.co;2-e | es_ES |
dc.description.references | Schoch, R. B., Bertsch, A., & Renaud, P. (2006). pH-Controlled Diffusion of Proteins with Different pI Values Across a Nanochannel on a Chip. Nano Letters, 6(3), 543-547. doi:10.1021/nl052372h | es_ES |
dc.description.references | Durand, N. F. Y., Dellagiacoma, C., Goetschmann, R., Bertsch, A., Märki, I., Lasser, T., & Renaud, P. (2009). Direct Observation of Transitions between Surface-Dominated and Bulk Diffusion Regimes in Nanochannels. Analytical Chemistry, 81(13), 5407-5412. doi:10.1021/ac900617b | es_ES |
dc.description.references | Rohani, M. M., & Zydney, A. L. (2010). Role of electrostatic interactions during protein ultrafiltration. Advances in Colloid and Interface Science, 160(1-2), 40-48. doi:10.1016/j.cis.2010.07.002 | es_ES |
dc.description.references | Rohani, M. M., & Zydney, A. L. (2009). Effect of surface charge distribution on protein transport through semipermeable ultrafiltration membranes. Journal of Membrane Science, 337(1-2), 324-331. doi:10.1016/j.memsci.2009.04.007 | es_ES |
dc.description.references | Mafé, S., Manzanares, J. A., & Pellicer, J. (1990). On the introduction of the pore wall charge in the space-charge model for microporous membranes. Journal of Membrane Science, 51(1-2), 161-168. doi:10.1016/s0376-7388(00)80899-6 | es_ES |
dc.description.references | Bosma, J. C., & Wesselingh, J. A. (1998). pH dependence of ion-exchange equilibrium of proteins. AIChE Journal, 44(11), 2399-2409. doi:10.1002/aic.690441108 | es_ES |
dc.description.references | Shi, Q., Zhou, Y., & Sun, Y. (2008). Influence of pH and Ionic Strength on the Steric Mass-Action Model Parameters around the Isoelectric Point of Protein. Biotechnology Progress, 21(2), 516-523. doi:10.1021/bp049735o | es_ES |
dc.description.references | Jönsson, B., & Ståhlberg, J. (1999). The electrostatic interaction between a charged sphere and an oppositely charged planar surface and its application to protein adsorption. Colloids and Surfaces B: Biointerfaces, 14(1-4), 67-75. doi:10.1016/s0927-7765(99)00025-9 | es_ES |
dc.description.references | Brenner, H., & Gaydos, L. J. (1977). The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. Journal of Colloid and Interface Science, 58(2), 312-356. doi:10.1016/0021-9797(77)90147-3 | es_ES |
dc.description.references | Cannell, D. S., & Rondelez, F. (1980). Diffusion of Polystyrenes through Microporous Membranes. Macromolecules, 13(6), 1599-1602. doi:10.1021/ma60078a046 | es_ES |
dc.description.references | Kuo, T.-C., Sloan, L. A., Sweedler, J. V., & Bohn, P. W. (2001). Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow: Effect of Surface Charge Density and Debye Length. Langmuir, 17(20), 6298-6303. doi:10.1021/la010429j | es_ES |
dc.description.references | APEL, P., BLONSKAYA, I., DMITRIEV, S., ORELOVITCH, O., & SARTOWSKA, B. (2006). Structure of polycarbonate track-etch membranes: Origin of the «paradoxical» pore shape. Journal of Membrane Science, 282(1-2), 393-400. doi:10.1016/j.memsci.2006.05.045 | es_ES |