Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0
Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029
Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400h
[+]
Pujar, N. S., & Zydney, A. L. (1998). Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. Journal of Chromatography A, 796(2), 229-238. doi:10.1016/s0021-9673(97)01003-0
Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029
Ileri, N., Faller, R., Palazoglu, A., Létant, S. E., Tringe, J. W., & Stroeve, P. (2013). Molecular transport of proteins through nanoporous membranes fabricated by interferometric lithography. Phys. Chem. Chem. Phys., 15(3), 965-971. doi:10.1039/c2cp43400h
Burns, D. B., & Zydney, A. L. (2001). Contributions to electrostatic interactions on protein transport in membrane systems. AIChE Journal, 47(5), 1101-1114. doi:10.1002/aic.690470517
Chun, K.-Y., & Stroeve, P. (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653-4658. doi:10.1021/la011250b
Osmanbeyoglu, H. U., Hur, T. B., & Kim, H. K. (2009). Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 343(1-2), 1-6. doi:10.1016/j.memsci.2009.07.027
Tanford, C., & Buzzell, J. G. (1956). The Viscosity of Aqueous Solutions of Bovine Serum Albumin between pH 4.3 and 10.5. The Journal of Physical Chemistry, 60(2), 225-231. doi:10.1021/j150536a020
Stroeve, P., & Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 29(6), 259-266. doi:10.1016/j.tibtech.2011.02.002
Ho, C.-C., & Zydney, A. L. (2001). Protein Fouling of Asymmetric and Composite Microfiltration Membranes. Industrial & Engineering Chemistry Research, 40(5), 1412-1421. doi:10.1021/ie000810j
Ku, J.-R., & Stroeve, P. (2004). Protein Diffusion in Charged Nanotubes: «On−Off» Behavior of Molecular Transport. Langmuir, 20(5), 2030-2032. doi:10.1021/la0357662
Yu, S., Lee, S. B., Kang, M., & Martin, C. R. (2001). Size-Based Protein Separations in Poly(ethylene glycol)-Derivatized Gold Nanotubule Membranes. Nano Letters, 1(9), 495-498. doi:10.1021/nl010044l
Yu, S., Lee, S. B., & Martin, C. R. (2003). Electrophoretic Protein Transport in Gold Nanotube Membranes. Analytical Chemistry, 75(6), 1239-1244. doi:10.1021/ac020711a
Hou, Z., Abbott, N. L., & Stroeve, P. (2000). Self-Assembled Monolayers on Electroless Gold Impart pH-Responsive Transport of Ions in Porous Membranes. Langmuir, 16(5), 2401-2404. doi:10.1021/la991045k
Böhme, U., & Scheler, U. (2007). Effective charge of bovine serum albumin determined by electrophoresis NMR. Chemical Physics Letters, 435(4-6), 342-345. doi:10.1016/j.cplett.2006.12.068
Beretta, S., Chirico, G., Arosio, D., & Baldini, G. (1997). Role of Ionic Strength on Hemoglobin Interparticle Interactions and Subunit Dissociation from Light Scattering. Macromolecules, 30(25), 7849-7855. doi:10.1021/ma971137l
Gaigalas, A. K., Hubbard, J. B., McCurley, M., & Woo, S. (1992). Diffusion of bovine serum albumin in aqueous solutions. The Journal of Physical Chemistry, 96(5), 2355-2359. doi:10.1021/j100184a063
LaGattuta, K. J., Sharma, V. S., Nicoli, D. F., & Kothari, B. K. (1981). Diffusion coefficients of hemoglobin by intensity fluctuation spectroscopy: effects of varying pH and ionic strength. Biophysical Journal, 33(1), 63-79. doi:10.1016/s0006-3495(81)84872-2
Mafé, S., Manzanares, J. A., & Ramirez, P. (2003). Modeling of surface vs. bulk ionic conductivity in fixed charge membranes. Phys. Chem. Chem. Phys., 5(2), 376-383. doi:10.1039/b209438j
Biesheuvel, P. M., Stroeve, P., & Barneveld, P. A. (2004). Effect of Protein Adsorption and Ionic Strength on the Equilibrium Partition Coefficient of Ionizable Macromolecules in Charged Nanopores. The Journal of Physical Chemistry B, 108(45), 17660-17665. doi:10.1021/jp047913q
Biesheuvel, P. M., & Wittemann, A. (2005). A Modified Box Model Including Charge Regulation for Protein Adsorption in a Spherical Polyelectrolyte Brush. The Journal of Physical Chemistry B, 109(9), 4209-4214. doi:10.1021/jp0452812
Keesom, W. ., Zelenka, R. ., & Radke, C. . (1988). A zeta-potential model for ionic surfactant adsorption on an ionogenic hydrophobic surface. Journal of Colloid and Interface Science, 125(2), 575-585. doi:10.1016/0021-9797(88)90024-0
G. B. Benedek and F. M. H.Villars , Physics with illustrative examples from Medicine and Biology (Statistical Physics) , Springer-Verlag , Heidelberg , 2000
Arosio, D., Kwansa, H. E., Gering, H., Piszczek, G., & Bucci, E. (2001). Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Biopolymers, 63(1), 1-11. doi:10.1002/bip.1057
Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152(1), 21-32. doi:10.1016/s0021-9673(00)85330-3
Beck, R. E., & Schultz, J. S. (1970). Hindered Diffusion in Microporous Membranes with Known Pore Geometry. Science, 170(3964), 1302-1305. doi:10.1126/science.170.3964.1302
Burns, D. B., & Zydney, A. L. (1999). Effect of solution pH on protein transport through ultrafiltration membranes. Biotechnology and Bioengineering, 64(1), 27-37. doi:10.1002/(sici)1097-0290(19990705)64:1<27::aid-bit3>3.0.co;2-e
Schoch, R. B., Bertsch, A., & Renaud, P. (2006). pH-Controlled Diffusion of Proteins with Different pI Values Across a Nanochannel on a Chip. Nano Letters, 6(3), 543-547. doi:10.1021/nl052372h
Durand, N. F. Y., Dellagiacoma, C., Goetschmann, R., Bertsch, A., Märki, I., Lasser, T., & Renaud, P. (2009). Direct Observation of Transitions between Surface-Dominated and Bulk Diffusion Regimes in Nanochannels. Analytical Chemistry, 81(13), 5407-5412. doi:10.1021/ac900617b
Rohani, M. M., & Zydney, A. L. (2010). Role of electrostatic interactions during protein ultrafiltration. Advances in Colloid and Interface Science, 160(1-2), 40-48. doi:10.1016/j.cis.2010.07.002
Rohani, M. M., & Zydney, A. L. (2009). Effect of surface charge distribution on protein transport through semipermeable ultrafiltration membranes. Journal of Membrane Science, 337(1-2), 324-331. doi:10.1016/j.memsci.2009.04.007
Mafé, S., Manzanares, J. A., & Pellicer, J. (1990). On the introduction of the pore wall charge in the space-charge model for microporous membranes. Journal of Membrane Science, 51(1-2), 161-168. doi:10.1016/s0376-7388(00)80899-6
Bosma, J. C., & Wesselingh, J. A. (1998). pH dependence of ion-exchange equilibrium of proteins. AIChE Journal, 44(11), 2399-2409. doi:10.1002/aic.690441108
Shi, Q., Zhou, Y., & Sun, Y. (2008). Influence of pH and Ionic Strength on the Steric Mass-Action Model Parameters around the Isoelectric Point of Protein. Biotechnology Progress, 21(2), 516-523. doi:10.1021/bp049735o
Jönsson, B., & Ståhlberg, J. (1999). The electrostatic interaction between a charged sphere and an oppositely charged planar surface and its application to protein adsorption. Colloids and Surfaces B: Biointerfaces, 14(1-4), 67-75. doi:10.1016/s0927-7765(99)00025-9
Brenner, H., & Gaydos, L. J. (1977). The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. Journal of Colloid and Interface Science, 58(2), 312-356. doi:10.1016/0021-9797(77)90147-3
Cannell, D. S., & Rondelez, F. (1980). Diffusion of Polystyrenes through Microporous Membranes. Macromolecules, 13(6), 1599-1602. doi:10.1021/ma60078a046
Kuo, T.-C., Sloan, L. A., Sweedler, J. V., & Bohn, P. W. (2001). Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow: Effect of Surface Charge Density and Debye Length. Langmuir, 17(20), 6298-6303. doi:10.1021/la010429j
APEL, P., BLONSKAYA, I., DMITRIEV, S., ORELOVITCH, O., & SARTOWSKA, B. (2006). Structure of polycarbonate track-etch membranes: Origin of the «paradoxical» pore shape. Journal of Membrane Science, 282(1-2), 393-400. doi:10.1016/j.memsci.2006.05.045
[-]