- -

Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials

Show full item record

Ali, M.; Ramirez Hoyos, P.; Nasir, S.; Nguyen, Q.; Ensinger, W.; Mafé, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters. 104(4):437031-437034. doi:10.1063/1.4863511

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55359

Files in this item

Item Metadata

Title: Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
Rectification in nanopores is usually achieved by a fixed asymmetry in the pore geometry and charge distribution. We show here that nanoparticle blocking of a cylindrical pore induces rectifying properties that can support ...[+]
Subjects: Nanoparticles , Rectification , Nanoporous materials , Charged currents , Ion channels
Copyrigths: Reserva de todos los derechos
Source:
Applied Physics Letters. (issn: 0003-6951 ) (eissn: 1077-3118 )
DOI: 10.1063/1.4863511
Publisher:
American Institute of Physics (AIP)
Publisher version: http://dx.doi.org/10.1063/1.4863511
Description: Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Thanks:
M.A., S.N., Q.H.N., and W. E. acknowledge the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. P. R. and S. M. acknowledge the Ministry of Economy and Competitiveness (project ...[+]
Type: Artículo

References

Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005

Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477

Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387 [+]
Astumian, R. D., & Hänggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33-39. doi:10.1063/1.1535005

Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477

Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471

Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

Yusko, E. C., An, R., & Mayer, M. (2009). Electroosmotic Flow Can Generate Ion Current Rectification in Nano- and Micropores. ACS Nano, 4(1), 477-487. doi:10.1021/nn9013438

Lee, S., Zhang, Y., White, H. S., Harrell, C. C., & Martin, C. R. (2004). Electrophoretic Capture and Detection of Nanoparticles at the Opening of a Membrane Pore Using Scanning Electrochemical Microscopy. Analytical Chemistry, 76(20), 6108-6115. doi:10.1021/ac049147p

White, R. J., & White, H. S. (2007). Influence of Electrophoresis Waveforms in Determining Stochastic Nanoparticle Capture Rates and Detection Sensitivity. Analytical Chemistry, 79(16), 6334-6340. doi:10.1021/ac070610i

Nestorovich, E. M., Danelon, C., Winterhalter, M., & Bezrukov, S. M. (2002). Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proceedings of the National Academy of Sciences, 99(15), 9789-9794. doi:10.1073/pnas.152206799

Mafé, S., Ramı́rez, P., & Alcaraz, A. (2003). Simple molecular model for the binding of antibiotic molecules to bacterial ion channels. The Journal of Chemical Physics, 119(15), 8097-8102. doi:10.1063/1.1606438

Karginov, V. A., Nestorovich, E. M., Moayeri, M., Leppla, S. H., & Bezrukov, S. M. (2005). Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proceedings of the National Academy of Sciences, 102(42), 15075-15080. doi:10.1073/pnas.0507488102

Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914

Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r

Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740

Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712

Blackiston, D. J., McLaughlin, K. A., & Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 8(21), 3527-3536. doi:10.4161/cc.8.21.9888

Levin, M., & Stevenson, C. G. (2012). Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 14(1), 295-323. doi:10.1146/annurev-bioeng-071811-150114

Davenport, M., Healy, K., Pevarnik, M., Teslich, N., Cabrini, S., Morrison, A. P., … Létant, S. E. (2012). The Role of Pore Geometry in Single Nanoparticle Detection. ACS Nano, 6(9), 8366-8380. doi:10.1021/nn303126n

Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503

Wanunu, M., Morrison, W., Rabin, Y., Grosberg, A. Y., & Meller, A. (2009). Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nature Nanotechnology, 5(2), 160-165. doi:10.1038/nnano.2009.379

Macrae, M. X., Blake, S., Mayer, M., & Yang, J. (2010). Nanoscale Ionic Diodes with Tunable and Switchable Rectifying Behavior. Journal of the American Chemical Society, 132(6), 1766-1767. doi:10.1021/ja909876h

Tagliazucchi, M., Rabin, Y., & Szleifer, I. (2013). Transport Rectification in Nanopores with Outer Membranes Modified with Surface Charges and Polyelectrolytes. ACS Nano, 7(10), 9085-9097. doi:10.1021/nn403686s

Tsutsui, M., Maeda, Y., He, Y., Hongo, S., Ryuzaki, S., Kawano, S., … Taniguchi, M. (2013). Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore. Applied Physics Letters, 103(1), 013108. doi:10.1063/1.4813084

Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328

Kalman, E., Healy, K., & Siwy, Z. S. (2007). Tuning ion current rectification in asymmetric nanopores by signal mixing. Europhysics Letters (EPL), 78(2), 28002. doi:10.1209/0295-5075/78/28002

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555

[-]

This item appears in the following Collection(s)

Show full item record