- -

Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rivaes, Rui es_ES
dc.contributor.author Rodríguez-González, Patricia es_ES
dc.contributor.author Ferreira, Maria Teresa es_ES
dc.contributor.author Pinheiro, Antonio es_ES
dc.contributor.author Politti, Emilio es_ES
dc.contributor.author Egger, Gregory es_ES
dc.contributor.author García-Arias, Alicia es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2015-10-01T10:24:23Z
dc.date.available 2015-10-01T10:24:23Z
dc.date.issued 2014-10
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/55403
dc.description.abstract Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. es_ES
dc.description.sponsorship This work was supported by the IWRM Era-Net Funding Initiative through the RIPFLOW project (references ERAC-CT-2005-026025, ERA-IWRM/0001/2008, CGL2008-03076-E/BTE), http://www.old.iwrm-net.eu/spip.php. Rui Rivaes benefited from a PhD grant sponsored by UTL - Universidade Tecnica de Lisboa (www.utl.pt) and Patricia Maria Rodriguez-Gonzalez benefited from a post-doctoral grant sponsored by FCT - Fundacao para a Ciencia e Tecnologia (www.fct.pt) (SFRH/BPD/47140/2008). The Spanish team would like to thank the Spanish Ministry of the Economy and Competitiveness the support provided through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Environmental Consulting Klagenfurt provided support in the form of salaries for authors EP and GE, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the `author contributions' section. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject GLOBAL WATER-RESOURCES es_ES
dc.subject SAN-PEDRO es_ES
dc.subject VEGETATION DYNAMICS es_ES
dc.subject FLUVIAL LANDFORMS es_ES
dc.subject STREAM ECOLOGY es_ES
dc.subject AIR-POLLUTION es_ES
dc.subject DISTURBANCE es_ES
dc.subject IMPACTS es_ES
dc.subject FOREST es_ES
dc.subject FUTURE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0110200
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F47140%2F2008/PT/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Rivaes, R.; Rodríguez-González, P.; Ferreira, MT.; Pinheiro, A.; Politti, E.; Egger, G.; García-Arias, A.... (2014). Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS ONE. 9(10):1-14. https://doi.org/10.1371/journal.pone.0110200 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0110200
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 278468 es_ES
dc.identifier.pmid 25330151 en_EN
dc.identifier.pmcid PMC4199630 en_EN
dc.description.references Bach, W. (1976). Global air pollution and climatic change. Reviews of Geophysics, 14(3), 429. doi:10.1029/rg014i003p00429 es_ES
dc.description.references Benton GS (1970) Carbon dioxide and its role in climate change. National Academy of Sciences. pp. 898–899. es_ES
dc.description.references Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russell, G. (1981). Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213(4511), 957-966. doi:10.1126/science.213.4511.957 es_ES
dc.description.references Lovelock, J. E. (1971). Air pollution and climatic change. Atmospheric Environment (1967), 5(6), 403-411. doi:10.1016/0004-6981(71)90143-0 es_ES
dc.description.references IPCC (2008) Climate change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Team CW, Pachauri RK, Reisinger A, editors. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 104 p. es_ES
dc.description.references Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, et al.. (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, <etal>et al</etal>.., editors. Climate Change 2007: The Physical Science Basis Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. pp. 747–845. es_ES
dc.description.references Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, et al.. (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 541–580. es_ES
dc.description.references Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81(S1), 7-30. doi:10.1007/s10584-006-9210-7 es_ES
dc.description.references Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, et al.. (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, <etal>et al</etal>.., editors. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdon and New York, NY, USA: Cambridge University Press. pp. 848–940. es_ES
dc.description.references Schneider, C., Laizé, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325-339. doi:10.5194/hess-17-325-2013 es_ES
dc.description.references Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Climatic Change, 50(1/2), 143-175. doi:10.1023/a:1010616428763 es_ES
dc.description.references Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347(1-2), 48-66. doi:10.1016/j.jhydrol.2007.08.028 es_ES
dc.description.references Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021 es_ES
dc.description.references Verzano K, Menzel L (2007) Snow conditions in mountains and climate change - a global view. In: Marks D, Hock R, Lehning M, Hayashi M, Gurney R, editors; Perugia, IT. IAHS Proceedings and Reports. pp. 147–154. es_ES
dc.description.references ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247 es_ES
dc.description.references Murray, S. J., Foster, P. N., & Prentice, I. C. (2012). Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology, 448-449, 14-29. doi:10.1016/j.jhydrol.2012.02.044 es_ES
dc.description.references Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099 es_ES
dc.description.references Lloyd NJ, Quinn G, Thoms MC, Arthington AH, Gawne B, et al.. (2004) Does flow modification cause geomorphological and ecological response in rivers? A literature review from an Australian perspective. Technical report 1/2004. Canberra, Australia: CRC for Freshwater Ecology. 0975164202. 57 p. http://www.library.adelaide.edu.au/cgi-bin/director?id=V1114450 es_ES
dc.description.references Jenkins, M. (2003). Prospects for Biodiversity. Science, 302(5648), 1175-1177. doi:10.1126/science.1088666 es_ES
dc.description.references Costanza, R., d’ Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253-260. doi:10.1038/387253a0 es_ES
dc.description.references Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2011). Vulnerability of riparian ecosystems to elevated CO 2 and climate change in arid and semiarid western N orth A merica. Global Change Biology, 18(3), 821-842. doi:10.1111/j.1365-2486.2011.02588.x es_ES
dc.description.references KARRENBERG, S., EDWARDS, P. J., & KOLLMANN, J. (2002). The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4), 733-748. doi:10.1046/j.1365-2427.2002.00894.x es_ES
dc.description.references MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x es_ES
dc.description.references Rood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113 es_ES
dc.description.references Junk WJ, Bayley PB, Sparks RE (1989) The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, editor. Canadian Special Publication of Fisheries and Aquatic Sciences. pp. 110–127. es_ES
dc.description.references Naiman and, R. J., & Décamps, H. (1997). THE ECOLOGY OF INTERFACES:Riparian Zones. Annual Review of Ecology and Systematics, 28(1), 621-658. doi:10.1146/annurev.ecolsys.28.1.621 es_ES
dc.description.references NRC NRC (2002) Riparian Areas: Functions and Strategies for Management. Washington, D.C., USA: The National Academies Press. 444 p. es_ES
dc.description.references McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., … Pinay, G. (2003). Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems, 6(4), 301-312. doi:10.1007/s10021-003-0161-9 es_ES
dc.description.references Tockner, K., & Stanford, J. A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation, 29(3), 308-330. doi:10.1017/s037689290200022x es_ES
dc.description.references Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, et al.. (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC, editor. Aquatic Ecosystems: trends and global prospects. New York, USA: Cambridge University Press. pp. 482. es_ES
dc.description.references Broadmeadow, S., & Nisbet, T. R. (2004). The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrology and Earth System Sciences, 8(3), 286-305. doi:10.5194/hess-8-286-2004 es_ES
dc.description.references Naiman, R. J., Decamps, H., & Pollock, M. (1993). The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecological Applications, 3(2), 209-212. doi:10.2307/1941822 es_ES
dc.description.references Casatti, L., Teresa, F. B., Gonçalves-Souza, T., Bessa, E., Manzotti, A. R., Gonçalves, C. da S., & Zeni, J. de O. (2012). From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology, 10(1), 205-214. doi:10.1590/s1679-62252012000100020 es_ES
dc.description.references Blackwell MSA, Maltby E, editors (2006) How to use floodplains for flood risk reduction. Luxembourg, Belgium: European Communities. 144 p. es_ES
dc.description.references Daily GC, editor (1997) Nature&apos;s Services - Societal Dependence on Natural Ecosystems. Washington D. C., USA: Island press. 392 p. es_ES
dc.description.references Berges SA (2009) Ecosystem services of riparian areas: stream bank stability and avian habitat. Ames, Iowa, USA: Iowa State University. 106 p. es_ES
dc.description.references Flather CH, Cordell HK (1995) Outdoor Recreation: Historical and Anticipated Trends. In: Knight RL, Gutzwiller KJ, editors. Wildlife and Recreationists - Coexistence through management and research. Washington D. C., USA: Island press. pp. 372. es_ES
dc.description.references Holmes, T. P., Bergstrom, J. C., Huszar, E., Kask, S. B., & Orr, F. (2004). Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics, 49(1), 19-30. doi:10.1016/j.ecolecon.2003.10.015 es_ES
dc.description.references NAIMAN, R. J., BILBY, R. E., & BISSON, P. A. (2000). Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 50(11), 996. doi:10.1641/0006-3568(2000)050[0996:reamit]2.0.co;2 es_ES
dc.description.references Nehlsen, W., Williams, J. E., & Lichatowich, J. A. (1991). Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries, 16(2), 4-21. doi:10.1577/1548-8446(1991)016<0004:psatcs>2.0.co;2 es_ES
dc.description.references Loučková, B. (2011). VEGETATION-LANDFORM ASSEMBLAGES ALONG SELECTED RIVERS IN THE CZECH REPUBLIC, A DECADE AFTER A 500-YEAR FLOOD EVENT. River Research and Applications, 28(8), 1275-1288. doi:10.1002/rra.1519 es_ES
dc.description.references Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., & Ajami, H. (2010). A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259(6), 1181-1189. doi:10.1016/j.foreco.2010.01.005 es_ES
dc.description.references Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L., Merritt, D. M., … Tarboton, D. (2005). River restoration. Water Resources Research, 41(10). doi:10.1029/2005wr003985 es_ES
dc.description.references Auble, G. T., Scott, M. L., & Friedman, J. M. (2005). Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas. Wetlands, 25(1), 143-154. doi:10.1672/0277-5212(2005)025[0143:uoisra]2.0.co;2 es_ES
dc.description.references Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933 es_ES
dc.description.references Dixon, M. D., & Turner, M. G. (2006). Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications, 22(10), 1057-1083. doi:10.1002/rra.948 es_ES
dc.description.references Orellana, F., Verma, P., Loheide, S. P., & Daly, E. (2012). Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Reviews of Geophysics, 50(3). doi:10.1029/2011rg000383 es_ES
dc.description.references Primack, A. G. B. (2000). SIMULATION OF CLIMATE-CHANGE EFFECTS ON RIPARIAN VEGETATION IN THE PERE MARQUETTE RIVER, MICHIGAN. Wetlands, 20(3), 538-547. doi:10.1672/0277-5212(2000)020<0538:soceor>2.0.co;2 es_ES
dc.description.references Tealdi, S., Camporeale, C., & Ridolfi, L. (2013). Inter-species competition–facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology, 318, 13-21. doi:10.1016/j.jtbi.2012.11.006 es_ES
dc.description.references Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84-99. doi:10.1899/08-048.1 es_ES
dc.description.references Politti E, Egger G, Angermann K, Blamauer B, Klösch M, et al.. (2011) Evaluating climate change impacts on Alpine floodplain vegetation. In: C. Chomette &amp; Steiger E, editor; 15–17 June; Clermont-Ferrand, France. pp. 177–182. es_ES
dc.description.references Rivaes R, Rodríguez-González PM, Albuquerque A, Pinheiro AN, Egger G, et al.. (2012) Climate change impacts on Mediterranean riparian vegetation; 5th International Perspective on Water Resources &amp; the Environment (IPWE 2012). January 4th-7th; Marrakech, Morocco. es_ES
dc.description.references Mader H, Steidl T, Wimmer R (1996) Abflußregime österreichischer Fließgewässer. Wien, AUT: Umweltbundesamt. 192 p. es_ES
dc.description.references Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, et al.. (2001) Climate Scenario Development. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, et al.., editors. Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press. pp. 739–768. es_ES
dc.description.references Nakicenovik N, Swart R, editors (2000) Emission Scenarios - Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Cambridge, UK: Cambridge University Press. 570 p. es_ES
dc.description.references Santos FD, Forbes K, Moita R, editors (2002) Climate Change in Portugal, Scenarios, Impacts and Adaptation Measures - SIAM project. Lisbon, Portugal: Gradiva. 454 p. es_ES
dc.description.references Stanzel, P., & Nachtnebel, H. P. (2010). Mögliche Auswirkungen des Klimawandels auf den Wasserhaushalt und die Wasserkraftnutzung in Österreich. Österreichische Wasser- und Abfallwirtschaft, 62(9-10), 180-187. doi:10.1007/s00506-010-0234-x es_ES
dc.description.references Moreno JM, Aguiló E, Alonso S, Cobelas MÁ, Anadón R, et al.. (2005) A Preliminary Assessment of the Impacts in Spain due to the Effects of Climate Change. Madrid, SP: Ministerio del Medio Ambiente. es_ES
dc.description.references Santos FD, Miranda P, editors (2006) Alterações climáticas em Portugal cenários, impactos e medidas de adaptação, Projecto SIAM II. Lisbon, Portugal: Gradiva. 506 p. es_ES
dc.description.references Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford Watershed Model IV. Department of Civil Engineering, Stanford University. 210 p. es_ES
dc.description.references Hernández L (2007) Efectos del Cambio Climático en los Sistemas Complejos de Recursos Hídricos. Aplicación a la Cuenca del Jucar. Valenvia, SP: Universidad Politécnica de Valencia. es_ES
dc.description.references Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017 es_ES
dc.description.references Stanley, E. H., Powers, S. M., & Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29(1), 67-83. doi:10.1899/08-027.1 es_ES
dc.description.references Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833 es_ES
dc.description.references Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573-592. doi:10.2307/1468118 es_ES
dc.description.references Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., … Wissmar, R. C. (1988). The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society, 7(4), 433-455. doi:10.2307/1467300 es_ES
dc.description.references White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. The Botanical Review, 45(3), 229-299. doi:10.1007/bf02860857 es_ES
dc.description.references Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14(16-17), 2861-2883. doi:10.1002/1099-1085(200011/12)14:16/17<2861::aid-hyp124>3.0.co;2-f es_ES
dc.description.references Benjankar R, Egger G, Jorde K (2009) Development of a dynamic floodplain vegetation model for the Kootenai river, USA: concept and methodology. 7th ISE and 8th HIC. es_ES
dc.description.references Egger, G., Politti, E., Woo, H., Cho, K.-H., Park, M., Cho, H., … Lee, H. (2012). Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-environment Research, 6(2), 151-161. doi:10.1016/j.jher.2012.01.007 es_ES
dc.description.references García-Arias A, Francés F, Andrés-Doménech I, Vallés F, Garófano-Gómez V, et al. (2011) Modeling the spatial distribution and temporal dynamics of Mediterranean riparian vegetation in a reach of the Mijares River (Spain). In: CChomette &amp; Steiger E, editor; EUROMECH Colloquium 523. 15–17 June; Clermont-Ferrand, France. pp. 153–157. es_ES
dc.description.references García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331 es_ES
dc.description.references Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., & Ferreira, M. T. (2012). Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology, 6(3), 413-424. doi:10.1002/eco.1287 es_ES
dc.description.references RIPFLOW (2011) Riparian vegetation modelling for the assessment of environmental flow regimes and climate change impacts within the WFD. 238 p. http://www.iiama.upv.es/RipFlow/publications/08_RIPFLOW%20Project%20-%20Final%20Report.pdf. es_ES
dc.description.references R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. es_ES
dc.description.references Bendix, J., & Hupp, C. R. (2000). Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes, 14(16-17), 2977-2990. doi:10.1002/1099-1085(200011/12)14:16/17<2977::aid-hyp130>3.0.co;2-4 es_ES
dc.description.references Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.x es_ES
dc.description.references Pardé M (1955) Fleuves et rivières. Paris: Armand Colin. 241 p. es_ES
dc.description.references L&apos;vovich MI (1979) World water resources and their future. Chelsea, Michigan, USA: American Geophysical Union. 415 p. es_ES
dc.description.references Wrzesiński, D. (2013). Uncertainty of Flow Regime Characteristics of Rivers in Europe. Quaestiones Geographicae, 32(1), 43-53. doi:10.2478/quageo-2013-0006 es_ES
dc.description.references Friedman, J. M., & Lee, V. J. (2002). EXTREME FLOODS, CHANNEL CHANGE, AND RIPARIAN FORESTS ALONG EPHEMERAL STREAMS. Ecological Monographs, 72(3), 409-425. doi:10.1890/0012-9615(2002)072[0409:efccar]2.0.co;2 es_ES
dc.description.references Whited, D. C., Lorang, M. S., Harner, M. J., Hauer, F. R., Kimball, J. S., & Stanford, J. A. (2007). CLIMATE, HYDROLOGIC DISTURBANCE, AND SUCCESSION: DRIVERS OF FLOODPLAIN PATTERN. Ecology, 88(4), 940-953. doi:10.1890/05-1149 es_ES
dc.description.references Gurnell, A. (2013). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4-25. doi:10.1002/esp.3397 es_ES
dc.description.references Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014 es_ES
dc.description.references Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1-2), 129-141. doi:10.1016/j.earscirev.2011.11.005 es_ES
dc.description.references Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., … Steiger, J. (2011). Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Science Reviews, 106(3-4), 307-331. doi:10.1016/j.earscirev.2011.03.002 es_ES
dc.description.references Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1-2), 56-86. doi:10.1016/j.earscirev.2007.05.004 es_ES
dc.description.references Politti E, Egger G, Angermann K, Rivaes R, Blamauer B, et al.. (2014) Evaluating climate change impacts on Alpine floodplain vegetation. Hydrobiologia: 1–19. es_ES
dc.description.references Auble, G. T., & Scott, M. L. (1998). Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands, 18(4), 546-556. doi:10.1007/bf03161671 es_ES
dc.description.references Johnson, S. L., Swanson, F. J., Grant, G. E., & Wondzell, S. M. (2000). Riparian forest disturbances by a mountain flood ? the influence of floated wood. Hydrological Processes, 14(16-17), 3031-3050. doi:10.1002/1099-1085(200011/12)14:16/17<3031::aid-hyp133>3.0.co;2-6 es_ES
dc.description.references AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992 es_ES
dc.description.references Ferreira, M. T., Aguiar, F. C., & Nogueira, C. (2005). Changes in riparian woods over space and time: Influence of environment and land use. Forest Ecology and Management, 212(1-3), 145-159. doi:10.1016/j.foreco.2005.03.010 es_ES
dc.description.references Pettit, N. E., Froend, R. H., & Davies, P. M. (2001). Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research & Management, 17(3), 201-215. doi:10.1002/rrr.624 es_ES
dc.description.references Shafroth, P. B., Stromberg, J. C., & Patten, D. T. (2002). RIPARIAN VEGETATION RESPONSE TO ALTERED DISTURBANCE AND STRESS REGIMES. Ecological Applications, 12(1), 107-123. doi:10.1890/1051-0761(2002)012[0107:rvrtad]2.0.co;2 es_ES
dc.description.references Stromberg, J. C., Tiller, R., & Richter, B. (1996). Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona. Ecological Applications, 6(1), 113-131. doi:10.2307/2269558 es_ES
dc.description.references Stromberg, J. C., Lite, S. J., Marler, R., Paradzick, C., Shafroth, P. B., Shorrock, D., … White, M. S. (2007). Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography, 16(3), 381-393. doi:10.1111/j.1466-8238.2007.00297.x es_ES
dc.description.references Frederick, K. D., & Major, D. C. (1997). Climatic Change, 37(1), 7-23. doi:10.1023/a:1005336924908 es_ES
dc.description.references Hoffman, M. T., & Rohde, R. F. (2010). Rivers Through Time: Historical Changes in the Riparian Vegetation of the Semi-Arid, Winter Rainfall Region of South Africa in Response to Climate and Land Use. Journal of the History of Biology, 44(1), 59-80. doi:10.1007/s10739-010-9246-4 es_ES
dc.description.references Schneider, C., Flörke, M., Geerling, G., Duel, H., Grygoruk, M., & Okruszko, T. (2011). The future of European floodplain wetlands under a changing climate. Journal of Water and Climate Change, 2(2-3), 106-122. doi:10.2166/wcc.2011.020 es_ES
dc.description.references Tague, C., Seaby, L., & Hope, A. (2008). Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change, 93(1-2), 137-155. doi:10.1007/s10584-008-9497-7 es_ES
dc.description.references Watson RT, Zinyowera MC, Moss RH, editors (1996) Climate Change 1995 - Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press. 879 p. es_ES
dc.description.references Hultine, K. R., & Bush, S. E. (2011). Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective. Water Resources Research, 47(7). doi:10.1029/2010wr010317 es_ES
dc.description.references Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. (2007). Effects of river flow scaling properties on riparian width and vegetation biomass. Water Resources Research, 43(12). doi:10.1029/2007wr006100 es_ES
dc.description.references Gran, K., & Paola, C. (2001). Riparian vegetation controls on braided stream dynamics. Water Resources Research, 37(12), 3275-3283. doi:10.1029/2000wr000203 es_ES
dc.description.references JOHNSON, W. C. (2002). Riparian vegetation diversity along regulated rivers: contribution of novel and relict habitats. Freshwater Biology, 47(4), 749-759. doi:10.1046/j.1365-2427.2002.00910.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem