Mostrar el registro sencillo del ítem
dc.contributor.author | Rivaes, Rui | es_ES |
dc.contributor.author | Rodríguez-González, Patricia | es_ES |
dc.contributor.author | Ferreira, Maria Teresa | es_ES |
dc.contributor.author | Pinheiro, Antonio | es_ES |
dc.contributor.author | Politti, Emilio | es_ES |
dc.contributor.author | Egger, Gregory | es_ES |
dc.contributor.author | García-Arias, Alicia | es_ES |
dc.contributor.author | Francés, F. | es_ES |
dc.date.accessioned | 2015-10-01T10:24:23Z | |
dc.date.available | 2015-10-01T10:24:23Z | |
dc.date.issued | 2014-10 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/55403 | |
dc.description.abstract | Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. | es_ES |
dc.description.sponsorship | This work was supported by the IWRM Era-Net Funding Initiative through the RIPFLOW project (references ERAC-CT-2005-026025, ERA-IWRM/0001/2008, CGL2008-03076-E/BTE), http://www.old.iwrm-net.eu/spip.php. Rui Rivaes benefited from a PhD grant sponsored by UTL - Universidade Tecnica de Lisboa (www.utl.pt) and Patricia Maria Rodriguez-Gonzalez benefited from a post-doctoral grant sponsored by FCT - Fundacao para a Ciencia e Tecnologia (www.fct.pt) (SFRH/BPD/47140/2008). The Spanish team would like to thank the Spanish Ministry of the Economy and Competitiveness the support provided through the SCARCE project (Consolider-Ingenio 2010 CSD2009-00065). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Environmental Consulting Klagenfurt provided support in the form of salaries for authors EP and GE, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the `author contributions' section. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | GLOBAL WATER-RESOURCES | es_ES |
dc.subject | SAN-PEDRO | es_ES |
dc.subject | VEGETATION DYNAMICS | es_ES |
dc.subject | FLUVIAL LANDFORMS | es_ES |
dc.subject | STREAM ECOLOGY | es_ES |
dc.subject | AIR-POLLUTION | es_ES |
dc.subject | DISTURBANCE | es_ES |
dc.subject | IMPACTS | es_ES |
dc.subject | FOREST | es_ES |
dc.subject | FUTURE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0110200 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F47140%2F2008/PT/ | en_EN |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Rivaes, R.; Rodríguez-González, P.; Ferreira, MT.; Pinheiro, A.; Politti, E.; Egger, G.; García-Arias, A.... (2014). Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS ONE. 9(10):1-14. https://doi.org/10.1371/journal.pone.0110200 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0110200 | |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 278468 | es_ES |
dc.identifier.pmid | 25330151 | en_EN |
dc.identifier.pmcid | PMC4199630 | en_EN |
dc.description.references | Bach, W. (1976). Global air pollution and climatic change. Reviews of Geophysics, 14(3), 429. doi:10.1029/rg014i003p00429 | es_ES |
dc.description.references | Benton GS (1970) Carbon dioxide and its role in climate change. National Academy of Sciences. pp. 898–899. | es_ES |
dc.description.references | Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russell, G. (1981). Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213(4511), 957-966. doi:10.1126/science.213.4511.957 | es_ES |
dc.description.references | Lovelock, J. E. (1971). Air pollution and climatic change. Atmospheric Environment (1967), 5(6), 403-411. doi:10.1016/0004-6981(71)90143-0 | es_ES |
dc.description.references | IPCC (2008) Climate change 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Team CW, Pachauri RK, Reisinger A, editors. Geneva, Switzerland: Intergovernmental Panel on Climate Change. 104 p. | es_ES |
dc.description.references | Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, et al.. (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, <etal>et al</etal>.., editors. Climate Change 2007: The Physical Science Basis Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. pp. 747–845. | es_ES |
dc.description.references | Alcamo J, Moreno JM, Nováky B, Bindi M, Corobov R, et al.. (2007) Europe. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 541–580. | es_ES |
dc.description.references | Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81(S1), 7-30. doi:10.1007/s10584-006-9210-7 | es_ES |
dc.description.references | Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, et al.. (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, <etal>et al</etal>.., editors. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdon and New York, NY, USA: Cambridge University Press. pp. 848–940. | es_ES |
dc.description.references | Schneider, C., Laizé, C. L. R., Acreman, M. C., & Flörke, M. (2013). How will climate change modify river flow regimes in Europe? Hydrology and Earth System Sciences, 17(1), 325-339. doi:10.5194/hess-17-325-2013 | es_ES |
dc.description.references | Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Climatic Change, 50(1/2), 143-175. doi:10.1023/a:1010616428763 | es_ES |
dc.description.references | Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts – and uncertainty – on the hydrology of a riparian system: The San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347(1-2), 48-66. doi:10.1016/j.jhydrol.2007.08.028 | es_ES |
dc.description.references | Serrat-Capdevila, A., Scott, R. L., James Shuttleworth, W., & Valdés, J. B. (2011). Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system. Journal of Hydrology, 399(1-2), 1-11. doi:10.1016/j.jhydrol.2010.12.021 | es_ES |
dc.description.references | Verzano K, Menzel L (2007) Snow conditions in mountains and climate change - a global view. In: Marks D, Hock R, Lehning M, Hayashi M, Gurney R, editors; Perugia, IT. IAHS Proceedings and Reports. pp. 147–154. | es_ES |
dc.description.references | ALCAMO, J., FLÖRKE, M., & MÄRKER, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275. doi:10.1623/hysj.52.2.247 | es_ES |
dc.description.references | Murray, S. J., Foster, P. N., & Prentice, I. C. (2012). Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology, 448-449, 14-29. doi:10.1016/j.jhydrol.2012.02.044 | es_ES |
dc.description.references | Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., … Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. doi:10.2307/1313099 | es_ES |
dc.description.references | Lloyd NJ, Quinn G, Thoms MC, Arthington AH, Gawne B, et al.. (2004) Does flow modification cause geomorphological and ecological response in rivers? A literature review from an Australian perspective. Technical report 1/2004. Canberra, Australia: CRC for Freshwater Ecology. 0975164202. 57 p. http://www.library.adelaide.edu.au/cgi-bin/director?id=V1114450 | es_ES |
dc.description.references | Jenkins, M. (2003). Prospects for Biodiversity. Science, 302(5648), 1175-1177. doi:10.1126/science.1088666 | es_ES |
dc.description.references | Costanza, R., d’ Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253-260. doi:10.1038/387253a0 | es_ES |
dc.description.references | Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M., & Shafroth, P. B. (2011). Vulnerability of riparian ecosystems to elevated CO 2 and climate change in arid and semiarid western N orth A merica. Global Change Biology, 18(3), 821-842. doi:10.1111/j.1365-2486.2011.02588.x | es_ES |
dc.description.references | KARRENBERG, S., EDWARDS, P. J., & KOLLMANN, J. (2002). The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology, 47(4), 733-748. doi:10.1046/j.1365-2427.2002.00894.x | es_ES |
dc.description.references | MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x | es_ES |
dc.description.references | Rood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113 | es_ES |
dc.description.references | Junk WJ, Bayley PB, Sparks RE (1989) The Flood Pulse Concept in River-Floodplain Systems. In: Dodge DP, editor. Canadian Special Publication of Fisheries and Aquatic Sciences. pp. 110–127. | es_ES |
dc.description.references | Naiman and, R. J., & Décamps, H. (1997). THE ECOLOGY OF INTERFACES:Riparian Zones. Annual Review of Ecology and Systematics, 28(1), 621-658. doi:10.1146/annurev.ecolsys.28.1.621 | es_ES |
dc.description.references | NRC NRC (2002) Riparian Areas: Functions and Strategies for Management. Washington, D.C., USA: The National Academies Press. 444 p. | es_ES |
dc.description.references | McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., … Pinay, G. (2003). Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems, 6(4), 301-312. doi:10.1007/s10021-003-0161-9 | es_ES |
dc.description.references | Tockner, K., & Stanford, J. A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation, 29(3), 308-330. doi:10.1017/s037689290200022x | es_ES |
dc.description.references | Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, et al.. (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC, editor. Aquatic Ecosystems: trends and global prospects. New York, USA: Cambridge University Press. pp. 482. | es_ES |
dc.description.references | Broadmeadow, S., & Nisbet, T. R. (2004). The effects of riparian forest management on the freshwater environment: a literature review of best management practice. Hydrology and Earth System Sciences, 8(3), 286-305. doi:10.5194/hess-8-286-2004 | es_ES |
dc.description.references | Naiman, R. J., Decamps, H., & Pollock, M. (1993). The Role of Riparian Corridors in Maintaining Regional Biodiversity. Ecological Applications, 3(2), 209-212. doi:10.2307/1941822 | es_ES |
dc.description.references | Casatti, L., Teresa, F. B., Gonçalves-Souza, T., Bessa, E., Manzotti, A. R., Gonçalves, C. da S., & Zeni, J. de O. (2012). From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology, 10(1), 205-214. doi:10.1590/s1679-62252012000100020 | es_ES |
dc.description.references | Blackwell MSA, Maltby E, editors (2006) How to use floodplains for flood risk reduction. Luxembourg, Belgium: European Communities. 144 p. | es_ES |
dc.description.references | Daily GC, editor (1997) Nature's Services - Societal Dependence on Natural Ecosystems. Washington D. C., USA: Island press. 392 p. | es_ES |
dc.description.references | Berges SA (2009) Ecosystem services of riparian areas: stream bank stability and avian habitat. Ames, Iowa, USA: Iowa State University. 106 p. | es_ES |
dc.description.references | Flather CH, Cordell HK (1995) Outdoor Recreation: Historical and Anticipated Trends. In: Knight RL, Gutzwiller KJ, editors. Wildlife and Recreationists - Coexistence through management and research. Washington D. C., USA: Island press. pp. 372. | es_ES |
dc.description.references | Holmes, T. P., Bergstrom, J. C., Huszar, E., Kask, S. B., & Orr, F. (2004). Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics, 49(1), 19-30. doi:10.1016/j.ecolecon.2003.10.015 | es_ES |
dc.description.references | NAIMAN, R. J., BILBY, R. E., & BISSON, P. A. (2000). Riparian Ecology and Management in the Pacific Coastal Rain Forest. BioScience, 50(11), 996. doi:10.1641/0006-3568(2000)050[0996:reamit]2.0.co;2 | es_ES |
dc.description.references | Nehlsen, W., Williams, J. E., & Lichatowich, J. A. (1991). Pacific Salmon at the Crossroads: Stocks at Risk from California, Oregon, Idaho, and Washington. Fisheries, 16(2), 4-21. doi:10.1577/1548-8446(1991)016<0004:psatcs>2.0.co;2 | es_ES |
dc.description.references | Loučková, B. (2011). VEGETATION-LANDFORM ASSEMBLAGES ALONG SELECTED RIVERS IN THE CZECH REPUBLIC, A DECADE AFTER A 500-YEAR FLOOD EVENT. River Research and Applications, 28(8), 1275-1288. doi:10.1002/rra.1519 | es_ES |
dc.description.references | Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., & Ajami, H. (2010). A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. Forest Ecology and Management, 259(6), 1181-1189. doi:10.1016/j.foreco.2010.01.005 | es_ES |
dc.description.references | Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L., Merritt, D. M., … Tarboton, D. (2005). River restoration. Water Resources Research, 41(10). doi:10.1029/2005wr003985 | es_ES |
dc.description.references | Auble, G. T., Scott, M. L., & Friedman, J. M. (2005). Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas. Wetlands, 25(1), 143-154. doi:10.1672/0277-5212(2005)025[0143:uoisra]2.0.co;2 | es_ES |
dc.description.references | Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933 | es_ES |
dc.description.references | Dixon, M. D., & Turner, M. G. (2006). Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications, 22(10), 1057-1083. doi:10.1002/rra.948 | es_ES |
dc.description.references | Orellana, F., Verma, P., Loheide, S. P., & Daly, E. (2012). Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Reviews of Geophysics, 50(3). doi:10.1029/2011rg000383 | es_ES |
dc.description.references | Primack, A. G. B. (2000). SIMULATION OF CLIMATE-CHANGE EFFECTS ON RIPARIAN VEGETATION IN THE PERE MARQUETTE RIVER, MICHIGAN. Wetlands, 20(3), 538-547. doi:10.1672/0277-5212(2000)020<0538:soceor>2.0.co;2 | es_ES |
dc.description.references | Tealdi, S., Camporeale, C., & Ridolfi, L. (2013). Inter-species competition–facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology, 318, 13-21. doi:10.1016/j.jtbi.2012.11.006 | es_ES |
dc.description.references | Winemiller, K. O., Flecker, A. S., & Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society, 29(1), 84-99. doi:10.1899/08-048.1 | es_ES |
dc.description.references | Politti E, Egger G, Angermann K, Blamauer B, Klösch M, et al.. (2011) Evaluating climate change impacts on Alpine floodplain vegetation. In: C. Chomette & Steiger E, editor; 15–17 June; Clermont-Ferrand, France. pp. 177–182. | es_ES |
dc.description.references | Rivaes R, Rodríguez-González PM, Albuquerque A, Pinheiro AN, Egger G, et al.. (2012) Climate change impacts on Mediterranean riparian vegetation; 5th International Perspective on Water Resources & the Environment (IPWE 2012). January 4th-7th; Marrakech, Morocco. | es_ES |
dc.description.references | Mader H, Steidl T, Wimmer R (1996) Abflußregime österreichischer Fließgewässer. Wien, AUT: Umweltbundesamt. 192 p. | es_ES |
dc.description.references | Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, et al.. (2001) Climate Scenario Development. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, et al.., editors. Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press. pp. 739–768. | es_ES |
dc.description.references | Nakicenovik N, Swart R, editors (2000) Emission Scenarios - Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Cambridge, UK: Cambridge University Press. 570 p. | es_ES |
dc.description.references | Santos FD, Forbes K, Moita R, editors (2002) Climate Change in Portugal, Scenarios, Impacts and Adaptation Measures - SIAM project. Lisbon, Portugal: Gradiva. 454 p. | es_ES |
dc.description.references | Stanzel, P., & Nachtnebel, H. P. (2010). Mögliche Auswirkungen des Klimawandels auf den Wasserhaushalt und die Wasserkraftnutzung in Österreich. Österreichische Wasser- und Abfallwirtschaft, 62(9-10), 180-187. doi:10.1007/s00506-010-0234-x | es_ES |
dc.description.references | Moreno JM, Aguiló E, Alonso S, Cobelas MÁ, Anadón R, et al.. (2005) A Preliminary Assessment of the Impacts in Spain due to the Effects of Climate Change. Madrid, SP: Ministerio del Medio Ambiente. | es_ES |
dc.description.references | Santos FD, Miranda P, editors (2006) Alterações climáticas em Portugal cenários, impactos e medidas de adaptação, Projecto SIAM II. Lisbon, Portugal: Gradiva. 506 p. | es_ES |
dc.description.references | Crawford NH, Linsley RK (1966) Digital simulation in hydrology: Stanford Watershed Model IV. Department of Civil Engineering, Stanford University. 210 p. | es_ES |
dc.description.references | Hernández L (2007) Efectos del Cambio Climático en los Sistemas Complejos de Recursos Hídricos. Aplicación a la Cuenca del Jucar. Valenvia, SP: Universidad Politécnica de Valencia. | es_ES |
dc.description.references | Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017 | es_ES |
dc.description.references | Stanley, E. H., Powers, S. M., & Lottig, N. R. (2010). The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society, 29(1), 67-83. doi:10.1899/08-027.1 | es_ES |
dc.description.references | Stromberg, J. C. (2001). Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments, 49(1), 17-34. doi:10.1006/jare.2001.0833 | es_ES |
dc.description.references | Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19(4), 573-592. doi:10.2307/1468118 | es_ES |
dc.description.references | Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., Minshall, G. W., … Wissmar, R. C. (1988). The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society, 7(4), 433-455. doi:10.2307/1467300 | es_ES |
dc.description.references | White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. The Botanical Review, 45(3), 229-299. doi:10.1007/bf02860857 | es_ES |
dc.description.references | Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes, 14(16-17), 2861-2883. doi:10.1002/1099-1085(200011/12)14:16/17<2861::aid-hyp124>3.0.co;2-f | es_ES |
dc.description.references | Benjankar R, Egger G, Jorde K (2009) Development of a dynamic floodplain vegetation model for the Kootenai river, USA: concept and methodology. 7th ISE and 8th HIC. | es_ES |
dc.description.references | Egger, G., Politti, E., Woo, H., Cho, K.-H., Park, M., Cho, H., … Lee, H. (2012). Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-environment Research, 6(2), 151-161. doi:10.1016/j.jher.2012.01.007 | es_ES |
dc.description.references | García-Arias A, Francés F, Andrés-Doménech I, Vallés F, Garófano-Gómez V, et al. (2011) Modeling the spatial distribution and temporal dynamics of Mediterranean riparian vegetation in a reach of the Mijares River (Spain). In: CChomette & Steiger E, editor; EUROMECH Colloquium 523. 15–17 June; Clermont-Ferrand, France. pp. 153–157. | es_ES |
dc.description.references | García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331 | es_ES |
dc.description.references | Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., & Ferreira, M. T. (2012). Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology, 6(3), 413-424. doi:10.1002/eco.1287 | es_ES |
dc.description.references | RIPFLOW (2011) Riparian vegetation modelling for the assessment of environmental flow regimes and climate change impacts within the WFD. 238 p. http://www.iiama.upv.es/RipFlow/publications/08_RIPFLOW%20Project%20-%20Final%20Report.pdf. | es_ES |
dc.description.references | R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing. | es_ES |
dc.description.references | Bendix, J., & Hupp, C. R. (2000). Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes, 14(16-17), 2977-2990. doi:10.1002/1099-1085(200011/12)14:16/17<2977::aid-hyp130>3.0.co;2-4 | es_ES |
dc.description.references | Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.x | es_ES |
dc.description.references | Pardé M (1955) Fleuves et rivières. Paris: Armand Colin. 241 p. | es_ES |
dc.description.references | L'vovich MI (1979) World water resources and their future. Chelsea, Michigan, USA: American Geophysical Union. 415 p. | es_ES |
dc.description.references | Wrzesiński, D. (2013). Uncertainty of Flow Regime Characteristics of Rivers in Europe. Quaestiones Geographicae, 32(1), 43-53. doi:10.2478/quageo-2013-0006 | es_ES |
dc.description.references | Friedman, J. M., & Lee, V. J. (2002). EXTREME FLOODS, CHANNEL CHANGE, AND RIPARIAN FORESTS ALONG EPHEMERAL STREAMS. Ecological Monographs, 72(3), 409-425. doi:10.1890/0012-9615(2002)072[0409:efccar]2.0.co;2 | es_ES |
dc.description.references | Whited, D. C., Lorang, M. S., Harner, M. J., Hauer, F. R., Kimball, J. S., & Stanford, J. A. (2007). CLIMATE, HYDROLOGIC DISTURBANCE, AND SUCCESSION: DRIVERS OF FLOODPLAIN PATTERN. Ecology, 88(4), 940-953. doi:10.1890/05-1149 | es_ES |
dc.description.references | Gurnell, A. (2013). Plants as river system engineers. Earth Surface Processes and Landforms, 39(1), 4-25. doi:10.1002/esp.3397 | es_ES |
dc.description.references | Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014 | es_ES |
dc.description.references | Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1-2), 129-141. doi:10.1016/j.earscirev.2011.11.005 | es_ES |
dc.description.references | Corenblit, D., Baas, A. C. W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R. A., … Steiger, J. (2011). Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings. Earth-Science Reviews, 106(3-4), 307-331. doi:10.1016/j.earscirev.2011.03.002 | es_ES |
dc.description.references | Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1-2), 56-86. doi:10.1016/j.earscirev.2007.05.004 | es_ES |
dc.description.references | Politti E, Egger G, Angermann K, Rivaes R, Blamauer B, et al.. (2014) Evaluating climate change impacts on Alpine floodplain vegetation. Hydrobiologia: 1–19. | es_ES |
dc.description.references | Auble, G. T., & Scott, M. L. (1998). Fluvial disturbance patches and cottonwood recruitment along the upper Missouri River, Montana. Wetlands, 18(4), 546-556. doi:10.1007/bf03161671 | es_ES |
dc.description.references | Johnson, S. L., Swanson, F. J., Grant, G. E., & Wondzell, S. M. (2000). Riparian forest disturbances by a mountain flood ? the influence of floated wood. Hydrological Processes, 14(16-17), 3031-3050. doi:10.1002/1099-1085(200011/12)14:16/17<3031::aid-hyp133>3.0.co;2-6 | es_ES |
dc.description.references | AGUIAR, F. C., & FERREIRA, M. T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environmental Conservation, 32(1), 30-41. doi:10.1017/s0376892905001992 | es_ES |
dc.description.references | Ferreira, M. T., Aguiar, F. C., & Nogueira, C. (2005). Changes in riparian woods over space and time: Influence of environment and land use. Forest Ecology and Management, 212(1-3), 145-159. doi:10.1016/j.foreco.2005.03.010 | es_ES |
dc.description.references | Pettit, N. E., Froend, R. H., & Davies, P. M. (2001). Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting western Australian rivers. Regulated Rivers: Research & Management, 17(3), 201-215. doi:10.1002/rrr.624 | es_ES |
dc.description.references | Shafroth, P. B., Stromberg, J. C., & Patten, D. T. (2002). RIPARIAN VEGETATION RESPONSE TO ALTERED DISTURBANCE AND STRESS REGIMES. Ecological Applications, 12(1), 107-123. doi:10.1890/1051-0761(2002)012[0107:rvrtad]2.0.co;2 | es_ES |
dc.description.references | Stromberg, J. C., Tiller, R., & Richter, B. (1996). Effects of Groundwater Decline on Riparian Vegetation of Semiarid Regions: The San Pedro, Arizona. Ecological Applications, 6(1), 113-131. doi:10.2307/2269558 | es_ES |
dc.description.references | Stromberg, J. C., Lite, S. J., Marler, R., Paradzick, C., Shafroth, P. B., Shorrock, D., … White, M. S. (2007). Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography, 16(3), 381-393. doi:10.1111/j.1466-8238.2007.00297.x | es_ES |
dc.description.references | Frederick, K. D., & Major, D. C. (1997). Climatic Change, 37(1), 7-23. doi:10.1023/a:1005336924908 | es_ES |
dc.description.references | Hoffman, M. T., & Rohde, R. F. (2010). Rivers Through Time: Historical Changes in the Riparian Vegetation of the Semi-Arid, Winter Rainfall Region of South Africa in Response to Climate and Land Use. Journal of the History of Biology, 44(1), 59-80. doi:10.1007/s10739-010-9246-4 | es_ES |
dc.description.references | Schneider, C., Flörke, M., Geerling, G., Duel, H., Grygoruk, M., & Okruszko, T. (2011). The future of European floodplain wetlands under a changing climate. Journal of Water and Climate Change, 2(2-3), 106-122. doi:10.2166/wcc.2011.020 | es_ES |
dc.description.references | Tague, C., Seaby, L., & Hope, A. (2008). Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change, 93(1-2), 137-155. doi:10.1007/s10584-008-9497-7 | es_ES |
dc.description.references | Watson RT, Zinyowera MC, Moss RH, editors (1996) Climate Change 1995 - Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press. 879 p. | es_ES |
dc.description.references | Hultine, K. R., & Bush, S. E. (2011). Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective. Water Resources Research, 47(7). doi:10.1029/2010wr010317 | es_ES |
dc.description.references | Muneepeerakul, R., Rinaldo, A., & Rodriguez-Iturbe, I. (2007). Effects of river flow scaling properties on riparian width and vegetation biomass. Water Resources Research, 43(12). doi:10.1029/2007wr006100 | es_ES |
dc.description.references | Gran, K., & Paola, C. (2001). Riparian vegetation controls on braided stream dynamics. Water Resources Research, 37(12), 3275-3283. doi:10.1029/2000wr000203 | es_ES |
dc.description.references | JOHNSON, W. C. (2002). Riparian vegetation diversity along regulated rivers: contribution of novel and relict habitats. Freshwater Biology, 47(4), 749-759. doi:10.1046/j.1365-2427.2002.00910.x | es_ES |