- -

Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions

Mostrar el registro completo del ítem

Jimenez Nogales, M.; Marini, S.; Gimeno Martinez, B.; Alvarez Melcon, A.; Quesada Pereira, FD.; Boria Esbert, VE.; Soto Pacheco, P.... (2012). Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions. Radio Science. 47(5):1-14. https://doi.org/10.1029/2012RS005008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/55423

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of time domain electromagnetic fields radiated by constant velocity moving particles traveling along an arbitrarily shaped cross-section waveguide using frequency domain Green's functions
Autor: Jimenez Nogales, M. Marini, Stephan Gimeno Martinez, Benito Alvarez Melcon, Alejandro Quesada Pereira, Fernando Daniel Boria Esbert, Vicente Enrique Soto Pacheco, Pablo Cogollos Borras, Santiago Raboso García-Baquero, David
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
A technique for the accurate computation of the time domain electromagnetic fields radiated by a charged distribution traveling along an arbitrarily shaped waveguide region is presented. Based on the transformation (by ...[+]
Palabras clave: Electromagnetic fields , Green's function , BI-RME method , Waveguide , Particle Accelerator
Derechos de uso: Reserva de todos los derechos
Fuente:
Radio Science. (issn: 0048-6604 )
DOI: 10.1029/2012RS005008
Editorial:
American Geophysical Union (AGU)
Versión del editor: http://dx.doi.org/10.1029/2012RS005008
Código del Proyecto:
info:eu-repo/grantAgreement/ESA//20841%2F08%2FNL%2FGLC/EU/Multipactor Análisis in Planar Transmisión Lines/
info:eu-repo/grantAgreement/MICINN//TEC2010-21520-C04-04/ES/TECNICAS DE MODELADO, SINTESIS Y DISEÑO DE CIRCUITOS PASIVOS MINIATURIZADOS EN TECNOLOGIA HIBRIDA GUIADA-PLANAR/
info:eu-repo/grantAgreement/f SéNeCa//08833%2FPI%2F08/ES/Métodos de Análisis de Comunicaciones Avanzadas mediante Cálculo Optimizado/
ESA/ESTEC through the project "Multipactor Analysis in Planar Transmission Lines" 20841/08/NL/GLC
Agradecimientos:
The authors would like to thank ESA/ESTEC for having cofunded this research activity through the Network Partnering Initiative program and through the project "Multipactor Analysis in Planar Transmission Lines" (contract ...[+]
Tipo: Artículo

References

Alvarez-Melcon, A., & Mosig, J. R. (2000). Two techniques for the efficient numerical calculation of the Green’s functions for planar shielded circuits and antennas. IEEE Transactions on Microwave Theory and Techniques, 48(9), 1492-1504. doi:10.1109/22.869000

Bane, K. L. F., Wilson, P. B., & Weiland, T. (1985). Wake fields and wake field acceleration. AIP Conference Proceedings. doi:10.1063/1.35182

Bozzi, M., Perregrini, L., Alvarez Melcon, A., Guglielmi, M., & Conciauro, G. (2001). MoM/BI-RME analysis of boxed MMICs with arbitrarily shaped metallizations. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2227-2234. doi:10.1109/22.971604 [+]
Alvarez-Melcon, A., & Mosig, J. R. (2000). Two techniques for the efficient numerical calculation of the Green’s functions for planar shielded circuits and antennas. IEEE Transactions on Microwave Theory and Techniques, 48(9), 1492-1504. doi:10.1109/22.869000

Bane, K. L. F., Wilson, P. B., & Weiland, T. (1985). Wake fields and wake field acceleration. AIP Conference Proceedings. doi:10.1063/1.35182

Bozzi, M., Perregrini, L., Alvarez Melcon, A., Guglielmi, M., & Conciauro, G. (2001). MoM/BI-RME analysis of boxed MMICs with arbitrarily shaped metallizations. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2227-2234. doi:10.1109/22.971604

Burov, A., & Danilov, V. (1999). Suppression of Transverse Bunch Instabilities by Asymmetries in the Chamber Geometry. Physical Review Letters, 82(11), 2286-2289. doi:10.1103/physrevlett.82.2286

Cogollos, S., Marini, S., Boria, V. E., Soto, P., Vidal, A., Esteban, H., … Gimeno, B. (2003). Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular, and elliptical arcs using the BI-RME method. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2378-2390. doi:10.1109/tmtt.2003.819776

Conciauro, G., Bressan, M., & Zuffada, C. (1984). Waveguide Modes Via an Integral Equation Leading to a Linear Matrix Eigenvalue Problem. IEEE Transactions on Microwave Theory and Techniques, 32(11), 1495-1504. doi:10.1109/tmtt.1984.1132880

Deshpande , M. D. 1997 Analysis of discontinuities in a rectangular waveguide using dyadic Green's function approach in conjuntion with Method of Moments Langley Res. Cent., NASA Hampton, Va.

Felsen, L. B., & Marcuvitz, N. (1994). Radiation and Scattering of Waves. doi:10.1109/9780470546307

Figueroa, H., Gai, W., Konecny, R., Norem, J., Ruggiero, A., Schoessow, P., & Simpson, J. (1988). Direct Measurement of Beam-Induced Fields in Accelerating Structures. Physical Review Letters, 60(21), 2144-2147. doi:10.1103/physrevlett.60.2144

Gai, W., Kanareykin, A. D., Kustov, A. L., & Simpson, J. (1997). Numerical simulations of intense charged-particle beam propagation in a dielectric wake-field accelerator. Physical Review E, 55(3), 3481-3488. doi:10.1103/physreve.55.3481

Gluckstern, R. L., van Zeijts, J., & Zotter, B. (1993). Coupling impedance of beam pipes of general cross section. Physical Review E, 47(1), 656-663. doi:10.1103/physreve.47.656

Hanson, G. W., & Yakovlev, A. B. (2002). Operator Theory for Electromagnetics. doi:10.1007/978-1-4757-3679-3

Hess, M., Park, C. S., & Bolton, D. (2007). Green’s function based space-charge field solver for electron source simulations. Physical Review Special Topics - Accelerators and Beams, 10(5). doi:10.1103/physrevstab.10.054201

Iriso-Ariz, U., Caspers, F., & Mostacci, A. (s. f.). Evaluation of the horizontal to vertical transverse impedance ratio for LHC beam screen using a 2D electrostatic code. Proceedings of the 2003 Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440). doi:10.1109/pac.2003.1289954

Jing, C., Liu, W., Xiao, L., Gai, W., Schoessow, P., & Wong, T. (2003). Dipole-mode wakefields in dielectric-loaded rectangular waveguide accelerating structures. Physical Review E, 68(1). doi:10.1103/physreve.68.016502

Kim, S. H., Chen, K. W., & Yang, J. S. (1990). Modal analysis of wake fields and its application to elliptical pill‐box cavity with finite aperture. Journal of Applied Physics, 68(10), 4942-4951. doi:10.1063/1.347079

Lutman, A., Vescovo, R., & Craievich, P. (2008). Electromagnetic field and short-range wake function in a beam pipe of elliptical cross section. Physical Review Special Topics - Accelerators and Beams, 11(7). doi:10.1103/physrevstab.11.074401

Ng, K.-Y. (1990). Wake fields in a dielectric-lined waveguide. Physical Review D, 42(5), 1819-1828. doi:10.1103/physrevd.42.1819

Palumbo, L., Vaccaro, V. G., & Wustefeld, G. (1984). Coupling Impedance in a Circular Particle Accelerator, a Particular Case: Circular Beam, Elliptic Chamber. IEEE Transactions on Nuclear Science, 31(4), 1011-1020. doi:10.1109/tns.1984.4333427

Panofsky, W. K. H., & Wenzel, W. A. (1956). Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio‐Frequency Fields. Review of Scientific Instruments, 27(11), 967-967. doi:10.1063/1.1715427

Rahmat-Samii, Y. (1975). On the Question of Computation of the Dyadic Green’s Function at the Source Region in Waveguides and Cavities (Short Papers). IEEE Transactions on Microwave Theory and Techniques, 23(9), 762-765. doi:10.1109/tmtt.1975.1128671

Rosing, M., & Gai, W. (1990). Longitudinal- and transverse-wake-field effects in dielectric structures. Physical Review D, 42(5), 1829-1834. doi:10.1103/physrevd.42.1829

Rumolo, G., Ruggiero, F., & Zimmermann, F. (2001). Simulation of the electron-cloud build up and its consequences on heat load, beam stability, and diagnostics. Physical Review Special Topics - Accelerators and Beams, 4(1). doi:10.1103/physrevstab.4.012801

Salah, W. (2004). Analytical and numerical investigations of the evolution of wake fields of accelerated electron beams encountering cavity discontinuities in laser-driven RF-free electron laser photoinjector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(3), 248-257. doi:10.1016/j.nima.2004.05.129

Salah, W., & Dolique, J.-M. (1999). Wake field of electron beam accelerated in a RF-gun of free electron laser «ELSA». Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 431(1-2), 27-37. doi:10.1016/s0168-9002(99)00255-7

Stupakov, G., Bane, K. L. F., & Zagorodnov, I. (2007). Optical approximation in the theory of geometric impedance. Physical Review Special Topics - Accelerators and Beams, 10(5). doi:10.1103/physrevstab.10.054401

Wang, J. J. H. (1978). Analysis of a Three-Dimensional Arbitrarily Shaped Dielectric or Biological Body Inside a Rectangular Waveguide. IEEE Transactions on Microwave Theory and Techniques, 26(7), 457-462. doi:10.1109/tmtt.1978.1129416

Wangler, T. P. (2008). RF Linear Accelerators. doi:10.1002/9783527623426

Xiao, L., Gai, W., & Sun, X. (2001). Field analysis of a dielectric-loaded rectangular waveguide accelerating structure. Physical Review E, 65(1). doi:10.1103/physreve.65.016505

Zagorodnov, I. (2006). Indirect methods for wake potential integration. Physical Review Special Topics - Accelerators and Beams, 9(10). doi:10.1103/physrevstab.9.102002

Zimmermann , F. 1997 A simulation study of electron-cloud instability and beam-induced multipacting in the LHC Eur. Org. for Nucl. Res. Geneva, Switzerland

Zotter, B. W., & Kheifets, S. (1998). Impedances and Wakes in High Energy Particle Accelerators. doi:10.1142/3068

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem