Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Lozano, Vicente | es_ES |
dc.contributor.author | Ramirez Hoyos, Patricio | es_ES |
dc.contributor.author | Cervera Montesinos, Javier | es_ES |
dc.contributor.author | Nasir, Saima | es_ES |
dc.contributor.author | Ali, Mubarak | es_ES |
dc.contributor.author | Ensinger, Wolfgang | es_ES |
dc.contributor.author | Mafé, Salvador | es_ES |
dc.date.accessioned | 2015-10-07T18:08:57Z | |
dc.date.available | 2015-10-07T18:08:57Z | |
dc.date.issued | 2015-02-16 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/55749 | |
dc.description | Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics | es_ES |
dc.description.abstract | The possibility of taking advantage of a fluctuating environment for energy and information transduction is a significant challenge in biological and artificial nanostructures. We demonstrate here directional electrical transduction from fluctuating external signals using a single nanopore of conical shape immersed in an ionic aqueous solution. To this end, we characterize experimentally the average output currents obtained by the electrical rectification of zero time-average input potentials. The transformation of external potential fluctuations into nonzero time-average responses using a single nanopore in liquid state is of fundamental significance for biology and nanophysics. This energy and information conversion constitutes also a significant step towards macroscopic scaling using multipore membranes. © 2015 AIP Publishing LLC. | es_ES |
dc.description.sponsorship | We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (Project MAT2012-32084) and the Generalitat Valenciana (Project Prometeo/GV/0069). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanofluidic diode | es_ES |
dc.subject | Ion channels | es_ES |
dc.subject | Rectification | es_ES |
dc.subject | Transduction | es_ES |
dc.subject | Cells | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4909532 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F069 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Gómez Lozano, V.; Ramirez Hoyos, P.; Cervera Montesinos, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafé, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters. 106(7):73701-73703. https://doi.org/10.1063/1.4909532 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4909532 | es_ES |
dc.description.upvformatpinicio | 73701 | es_ES |
dc.description.upvformatpfin | 73703 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 291638 | es_ES |
dc.identifier.eissn | 1077-3118 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Astumian, R. D. (2011). Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annual Review of Biophysics, 40(1), 289-313. doi:10.1146/annurev-biophys-042910-155355 | es_ES |
dc.description.references | Tsong, T. Y. (2002). Journal of Biological Physics, 28(2), 309-325. doi:10.1023/a:1019991918315 | es_ES |
dc.description.references | Xie, T. D., Chen, Y., Marszalek, P., & Tsong, T. Y. (1997). Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophysical Journal, 72(6), 2496-2502. doi:10.1016/s0006-3495(97)78894-5 | es_ES |
dc.description.references | Qian, H. (2012). Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme, Bistability with Nonlinear Feedback, and Other Mechanisms for Sigmoidal Responses. Annual Review of Biophysics, 41(1), 179-204. doi:10.1146/annurev-biophys-050511-102240 | es_ES |
dc.description.references | Levin, M. (2012). Molecular bioelectricity in developmental biology: New tools and recent discoveries. BioEssays, 34(3), 205-217. doi:10.1002/bies.201100136 | es_ES |
dc.description.references | Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748 | es_ES |
dc.description.references | Hudspeth, A. J., Choe, Y., Mehta, A. D., & Martin, P. (2000). Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences, 97(22), 11765-11772. doi:10.1073/pnas.97.22.11765 | es_ES |
dc.description.references | Simpson, M. L., & Cummings, P. T. (2011). Fluctuations and Correlations in Physical and Biological Nanosystems: The Tale Is in the Tails. ACS Nano, 5(4), 2425-2432. doi:10.1021/nn201011m | es_ES |
dc.description.references | Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387 | es_ES |
dc.description.references | Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477 | es_ES |
dc.description.references | Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0 | es_ES |
dc.description.references | Cervera, J., Claver, J. M., & Mafe, S. (2013). Individual Variability and Average Reliability in Parallel Networks of Heterogeneous Biological and Artificial Nanostructures. IEEE Transactions on Nanotechnology, 12(6), 1198-1205. doi:10.1109/tnano.2013.2283871 | es_ES |
dc.description.references | Hirano, Y., Segawa, Y., Kawai, T., & Matsumoto, T. (2012). Stochastic Resonance in a Molecular Redox Circuit. The Journal of Physical Chemistry C, 117(1), 140-145. doi:10.1021/jp310486z | es_ES |
dc.description.references | Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 | es_ES |
dc.description.references | Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 | es_ES |
dc.description.references | Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 | es_ES |
dc.description.references | Ali, M., Ramirez, P., Nasir, S., Nguyen, Q.-H., Ensinger, W., & Mafe, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters, 104(4), 043703. doi:10.1063/1.4863511 | es_ES |
dc.description.references | Cervera, J., & Mafé, S. (2013). Threshold diversity effects on the electric currents of voltage-gated ion channels. EPL (Europhysics Letters), 102(6), 68002. doi:10.1209/0295-5075/102/68002 | es_ES |
dc.description.references | Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740 | es_ES |
dc.description.references | Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712 | es_ES |
dc.description.references | Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 | es_ES |
dc.description.references | Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 | es_ES |
dc.description.references | Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f | es_ES |
dc.description.references | Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 | es_ES |
dc.description.references | Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b | es_ES |
dc.description.references | Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 | es_ES |