- -

Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Lozano, Vicente es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Cervera Montesinos, Javier es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2015-10-07T18:08:57Z
dc.date.available 2015-10-07T18:08:57Z
dc.date.issued 2015-02-16
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/55749
dc.description Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics es_ES
dc.description.abstract The possibility of taking advantage of a fluctuating environment for energy and information transduction is a significant challenge in biological and artificial nanostructures. We demonstrate here directional electrical transduction from fluctuating external signals using a single nanopore of conical shape immersed in an ionic aqueous solution. To this end, we characterize experimentally the average output currents obtained by the electrical rectification of zero time-average input potentials. The transformation of external potential fluctuations into nonzero time-average responses using a single nanopore in liquid state is of fundamental significance for biology and nanophysics. This energy and information conversion constitutes also a significant step towards macroscopic scaling using multipore membranes. © 2015 AIP Publishing LLC. es_ES
dc.description.sponsorship We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (Project MAT2012-32084) and the Generalitat Valenciana (Project Prometeo/GV/0069). en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanofluidic diode es_ES
dc.subject Ion channels es_ES
dc.subject Rectification es_ES
dc.subject Transduction es_ES
dc.subject Cells es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4909532
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F069 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gómez Lozano, V.; Ramirez Hoyos, P.; Cervera Montesinos, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafé, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters. 106(7):73701-73703. https://doi.org/10.1063/1.4909532 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4909532 es_ES
dc.description.upvformatpinicio 73701 es_ES
dc.description.upvformatpfin 73703 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 106 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 291638 es_ES
dc.identifier.eissn 1077-3118
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Astumian, R. D. (2011). Stochastic Conformational Pumping: A Mechanism for Free-Energy Transduction by Molecules. Annual Review of Biophysics, 40(1), 289-313. doi:10.1146/annurev-biophys-042910-155355 es_ES
dc.description.references Tsong, T. Y. (2002). Journal of Biological Physics, 28(2), 309-325. doi:10.1023/a:1019991918315 es_ES
dc.description.references Xie, T. D., Chen, Y., Marszalek, P., & Tsong, T. Y. (1997). Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophysical Journal, 72(6), 2496-2502. doi:10.1016/s0006-3495(97)78894-5 es_ES
dc.description.references Qian, H. (2012). Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme, Bistability with Nonlinear Feedback, and Other Mechanisms for Sigmoidal Responses. Annual Review of Biophysics, 41(1), 179-204. doi:10.1146/annurev-biophys-050511-102240 es_ES
dc.description.references Levin, M. (2012). Molecular bioelectricity in developmental biology: New tools and recent discoveries. BioEssays, 34(3), 205-217. doi:10.1002/bies.201100136 es_ES
dc.description.references Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748 es_ES
dc.description.references Hudspeth, A. J., Choe, Y., Mehta, A. D., & Martin, P. (2000). Putting ion channels to work: Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proceedings of the National Academy of Sciences, 97(22), 11765-11772. doi:10.1073/pnas.97.22.11765 es_ES
dc.description.references Simpson, M. L., & Cummings, P. T. (2011). Fluctuations and Correlations in Physical and Biological Nanosystems: The Tale Is in the Tails. ACS Nano, 5(4), 2425-2432. doi:10.1021/nn201011m es_ES
dc.description.references Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81(1), 387-442. doi:10.1103/revmodphys.81.387 es_ES
dc.description.references Magnasco, M. O. (1993). Forced thermal ratchets. Physical Review Letters, 71(10), 1477-1481. doi:10.1103/physrevlett.71.1477 es_ES
dc.description.references Chialvo, D. R., & Millonas, M. M. (1995). Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet. Physics Letters A, 209(1-2), 26-30. doi:10.1016/0375-9601(95)00773-0 es_ES
dc.description.references Cervera, J., Claver, J. M., & Mafe, S. (2013). Individual Variability and Average Reliability in Parallel Networks of Heterogeneous Biological and Artificial Nanostructures. IEEE Transactions on Nanotechnology, 12(6), 1198-1205. doi:10.1109/tnano.2013.2283871 es_ES
dc.description.references Hirano, Y., Segawa, Y., Kawai, T., & Matsumoto, T. (2012). Stochastic Resonance in a Molecular Redox Circuit. The Journal of Physical Chemistry C, 117(1), 140-145. doi:10.1021/jp310486z es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES
dc.description.references Ali, M., Ramirez, P., Nasir, S., Nguyen, Q.-H., Ensinger, W., & Mafe, S. (2014). Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials. Applied Physics Letters, 104(4), 043703. doi:10.1063/1.4863511 es_ES
dc.description.references Cervera, J., & Mafé, S. (2013). Threshold diversity effects on the electric currents of voltage-gated ion channels. EPL (Europhysics Letters), 102(6), 68002. doi:10.1209/0295-5075/102/68002 es_ES
dc.description.references Astumian, R. D., Weaver, J. C., & Adair, R. K. (1995). Rectification and signal averaging of weak electric fields by biological cells. Proceedings of the National Academy of Sciences, 92(9), 3740-3743. doi:10.1073/pnas.92.9.3740 es_ES
dc.description.references Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Processing weak electrical signals with threshold-potential nanostructures showing a high variability. Applied Physics Letters, 99(15), 153703. doi:10.1063/1.3650712 es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471 es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem