Mostrar el registro sencillo del ítem
dc.contributor.author | Artidiello Moreno, Santiago de Jesús | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Penkova Vassileva, María | es_ES |
dc.date.accessioned | 2015-10-08T12:40:46Z | |
dc.date.available | 2015-10-08T12:40:46Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1110-757X | |
dc.identifier.uri | http://hdl.handle.net/10251/55803 | |
dc.description.abstract | A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Journal of Applied Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | 4th-order iterative methods | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Optimal high-order methods for solving nonlinear equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/591638 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2011-1-B1-33/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2014). Optimal high-order methods for solving nonlinear equations. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/591638 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/591638 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 269006 | es_ES |
dc.identifier.eissn | 1687-0042 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 | es_ES |
dc.description.references | Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900 | es_ES |
dc.description.references | Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 | es_ES |
dc.description.references | Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597 | es_ES |
dc.description.references | Khan, Y., Fardi, M., & Sayevand, K. (2012). A new general eighth-order family of iterative methods for solving nonlinear equations. Applied Mathematics Letters, 25(12), 2262-2266. doi:10.1016/j.aml.2012.06.014 | es_ES |
dc.description.references | Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867 | es_ES |
dc.description.references | Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9 | es_ES |
dc.description.references | Thukral, R. (2012). New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations. American Journal of Computational and Applied Mathematics, 2(3), 112-118. doi:10.5923/j.ajcam.20120203.08 | es_ES |
dc.description.references | Sharma, J. R., Guha, R. K., & Gupta, P. (2013). Improved King’s methods with optimal order of convergence based on rational approximations. Applied Mathematics Letters, 26(4), 473-480. doi:10.1016/j.aml.2012.11.011 | es_ES |
dc.description.references | Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105 | es_ES |
dc.description.references | King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 | es_ES |
dc.description.references | Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055 | es_ES |
dc.description.references | Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |