- -

Optimal high-order methods for solving nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal high-order methods for solving nonlinear equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Artidiello Moreno, Santiago de Jesús es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Penkova Vassileva, María es_ES
dc.date.accessioned 2015-10-08T12:40:46Z
dc.date.available 2015-10-08T12:40:46Z
dc.date.issued 2014
dc.identifier.issn 1110-757X
dc.identifier.uri http://hdl.handle.net/10251/55803
dc.description.abstract A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones. es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Applied Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 4th-order iterative methods es_ES
dc.subject Newton's method es_ES
dc.subject Convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optimal high-order methods for solving nonlinear equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/591638
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2011-1-B1-33/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2014). Optimal high-order methods for solving nonlinear equations. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/591638 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/591638 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 269006 es_ES
dc.identifier.eissn 1687-0042
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900 es_ES
dc.description.references Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 es_ES
dc.description.references Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597 es_ES
dc.description.references Khan, Y., Fardi, M., & Sayevand, K. (2012). A new general eighth-order family of iterative methods for solving nonlinear equations. Applied Mathematics Letters, 25(12), 2262-2266. doi:10.1016/j.aml.2012.06.014 es_ES
dc.description.references Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867 es_ES
dc.description.references Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9 es_ES
dc.description.references Thukral, R. (2012). New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations. American Journal of Computational and Applied Mathematics, 2(3), 112-118. doi:10.5923/j.ajcam.20120203.08 es_ES
dc.description.references Sharma, J. R., Guha, R. K., & Gupta, P. (2013). Improved King’s methods with optimal order of convergence based on rational approximations. Applied Mathematics Letters, 26(4), 473-480. doi:10.1016/j.aml.2012.11.011 es_ES
dc.description.references Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105 es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055 es_ES
dc.description.references Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem