- -

Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods

Mostrar el registro completo del ítem

Artidiello Moreno, SDJ.; Chicharro López, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics. 90(10):2049-2060. https://doi.org/10.1080/00207160.2012.748900

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/56765

Ficheros en el ítem

Metadatos del ítem

Título: Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods
Autor: Artidiello Moreno, Santiago de Jesús Chicharro López, Francisco Israel Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper, a family of new fourth-order optimal iterative methods for solving nonlinear equations is proposed. The classical King s family of fourth-order schemes is obtained as an special case. We also present results ...[+]
Palabras clave: Iterative methods , Order of convergence , Rational map , Basin of attraction , Conjugacy classes
Derechos de uso: Cerrado
Fuente:
International Journal of Computer Mathematics. (issn: 0020-7160 ) (eissn: 1029-0265 )
DOI: 10.1080/00207160.2012.748900
Editorial:
Taylor & Francis Ltd
Versión del editor: http://dx.doi.org/10.1080/00207160.2012.748900
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
Agradecimientos:
The authors thank the referees for their valuable comments and for their suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and ...[+]
Tipo: Artículo

References

Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004

Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536

Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013 [+]
Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004

Blanchard, P. (1995). The dynamics of Newton’s method. Proceedings of Symposia in Applied Mathematics, 139-154. doi:10.1090/psapm/049/1315536

Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013

Douady, A., & Hubbard, J. H. (1985). On the dynamics of polynomial-like mappings. Annales scientifiques de l’École normale supérieure, 18(2), 287-343. doi:10.24033/asens.1491

DRAKOPOULOS, V. (1999). HOW IS THE DYNAMICS OF KÖNIG ITERATION FUNCTIONS AFFECTED BY THEIR ADDITIONAL FIXED POINTS? Fractals, 07(03), 327-334. doi:10.1142/s0218348x99000323

King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072

Kneisl, K. (2001). Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method. Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(2), 359-370. doi:10.1063/1.1368137

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

Wang, X., & Liu, L. (2009). Two new families of sixth-order methods for solving non-linear equations. Applied Mathematics and Computation, 213(1), 73-78. doi:10.1016/j.amc.2009.03.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem