- -

Further properties on the core partial order and other matrix partial orders

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Further properties on the core partial order and other matrix partial orders

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Malik, Saroj B. es_ES
dc.contributor.author Rueda, Laura Catalina es_ES
dc.contributor.author Thome, Néstor es_ES
dc.date.accessioned 2015-11-05T08:27:08Z
dc.date.available 2015-11-05T08:27:08Z
dc.date.issued 2014-12-02
dc.identifier.issn 0308-1087
dc.identifier.uri http://hdl.handle.net/10251/57052
dc.description.abstract This paper carries further the study of core partial order initiated by Baksalary and Trenkler [Core inverse of matrices, Linear Multilinear Algebra. 2010;58:681-697]. We have extensively studied the core partial order, and some new characterizations are obtained in this paper. In addition, simple expressions for the already known characterizations of the minus, the star (and one-sided star), the sharp (and one-sided sharp) and the diamond partial orders are also obtained by using a Hartwig-Spindelbck decomposition. es_ES
dc.description.sponsorship This author was partially supported by Ministry of Education of Spain [grant number DGI MTM2010-18228] and by Universidad Nacional de La Pampa, Argentina, Facultad de Ingenieria [grant number Resol. No 049/11]. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Linear and Multilinear Algebra es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Minus partial order es_ES
dc.subject Core partial order es_ES
dc.subject Core inverse es_ES
dc.subject Matrix decomposition es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Further properties on the core partial order and other matrix partial orders es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/03081087.2013.839676
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNLPam//049%2F11/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Malik, SB.; Rueda, LC.; Thome, N. (2014). Further properties on the core partial order and other matrix partial orders. Linear and Multilinear Algebra. 62(12):1629-1648. https://doi.org/10.1080/03081087.2013.839676 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/03081087.2013.839676 es_ES
dc.description.upvformatpinicio 1629 es_ES
dc.description.upvformatpfin 1648 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 272291 es_ES
dc.identifier.eissn 1563-5139
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universidad Nacional de La Pampa, Argentina es_ES
dc.description.references Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452 es_ES
dc.description.references Baksalary, J. K., & Hauke, J. (1990). A further algebraic version of Cochran’s theorem and matrix partial orderings. Linear Algebra and its Applications, 127, 157-169. doi:10.1016/0024-3795(90)90341-9 es_ES
dc.description.references Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222 es_ES
dc.description.references Baksalary, J. K., Baksalary, O. M., & Liu, X. (2003). Further properties of the star, left-star, right-star, and minus partial orderings. Linear Algebra and its Applications, 375, 83-94. doi:10.1016/s0024-3795(03)00609-8 es_ES
dc.description.references Groβ, J., Hauke, J., & Markiewicz, A. (1999). Partial orderings, preorderings, and the polar decomposition of matrices. Linear Algebra and its Applications, 289(1-3), 161-168. doi:10.1016/s0024-3795(98)10108-8 es_ES
dc.description.references Mosić, D., & Djordjević, D. S. (2012). Reverse order law for the group inverse in rings. Applied Mathematics and Computation, 219(5), 2526-2534. doi:10.1016/j.amc.2012.08.088 es_ES
dc.description.references Patrício, P., & Costa, A. (2009). On the Drazin index of regular elements. Open Mathematics, 7(2). doi:10.2478/s11533-009-0015-6 es_ES
dc.description.references Rakić, D. S., & Djordjević, D. S. (2012). Space pre-order and minus partial order for operators on Banach spaces. Aequationes mathematicae, 85(3), 429-448. doi:10.1007/s00010-012-0133-2 es_ES
dc.description.references Tošić, M., & Cvetković-Ilić, D. S. (2012). Invertibility of a linear combination of two matrices and partial orderings. Applied Mathematics and Computation, 218(9), 4651-4657. doi:10.1016/j.amc.2011.10.052 es_ES
dc.description.references Hartwig, R. E., & Spindelböck, K. (1983). Matrices for whichA∗andA†commute. Linear and Multilinear Algebra, 14(3), 241-256. doi:10.1080/03081088308817561 es_ES
dc.description.references Baksalary, O. M., Styan, G. P. H., & Trenkler, G. (2009). On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra and its Applications, 430(10), 2798-2812. doi:10.1016/j.laa.2009.01.015 es_ES
dc.description.references Mielniczuk, J. (2011). Note on the core matrix partial ordering. Discussiones Mathematicae Probability and Statistics, 31(1-2), 71. doi:10.7151/dmps.1134 es_ES
dc.description.references Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra. doi:10.1137/1.9780898719512 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem