- -

Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining

Mostrar el registro completo del ítem

Montoliu, C.; Ferrando Jódar, N.; Gosalvez Ayuso, MA.; Cerdá Boluda, J.; Colom Palero, RJ. (2013). Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining. Journal of Micromechanics and Microengineering. 23(7). https://doi.org/10.1088/0960-1317/23/7/075017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57067

Ficheros en el ítem

Metadatos del ítem

Título: Level set implementation for the simulation of anisotropic etching: application to complex MEMS micromachining
Autor: Montoliu, C Ferrando Jódar, Néstor Gosalvez Ayuso, Miguel Angel Cerdá Boluda, Joaquín Colom Palero, Ricardo José
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
The use of atomistic methods, such as the continuous cellular automaton (CCA), is currently regarded as an accurate and efficient approach for the simulation of anisotropic etching in the development of micro-electro-mechanical ...[+]
Palabras clave: SINGLE-CRYSTAL SILICON , UNIFIED MODEL , 3-DIMENSIONAL SIMULATIONS , CELLULAR-AUTOMATON , KOH , LITHOGRAPHY , DEPOSITION , ALGORITHMS , MORPHOLOGY , EVOLUTION
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Micromechanics and Microengineering. (issn: 0960-1317 ) (eissn: 1361-6439 )
DOI: 10.1088/0960-1317/23/7/075017
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/0960-1317/23/7/075017
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BES-2011-045940/ES/BES-2011-045940/
Agradecimientos:
This work has been supported by the Spanish FPI-MICINN BES-2011-045940 grant and the Ramon y Cajal Fellowship Program by the Spanish Ministry of Science and Innovation. Also, we acknowledge support by the JAE-Doc grant ...[+]
Tipo: Artículo

References

Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787

Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277

Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0 [+]
Weirauch, D. F. (1975). Correlation of the anisotropic etching of single−crystal silicon spheres and wafers. Journal of Applied Physics, 46(4), 1478-1483. doi:10.1063/1.321787

Seidel, H. (1990). Anisotropic Etching of Crystalline Silicon in Alkaline Solutions. Journal of The Electrochemical Society, 137(11), 3612. doi:10.1149/1.2086277

Zielke, D., & Frühauf, J. (1995). Determination of rates for orientation-dependent etching. Sensors and Actuators A: Physical, 48(2), 151-156. doi:10.1016/0924-4247(95)00993-0

Wind, R. A., & Hines, M. A. (2000). Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 460(1-3), 21-38. doi:10.1016/s0039-6028(00)00479-9

Gosálvez, M. A., Sato, K., Foster, A. S., Nieminen, R. M., & Tanaka, H. (2007). An atomistic introduction to anisotropic etching. Journal of Micromechanics and Microengineering, 17(4), S1-S26. doi:10.1088/0960-1317/17/4/s01

Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y., & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 64(1), 87-93. doi:10.1016/s0924-4247(97)01658-0

Zubel, I., & Kramkowska, M. (2002). The effect of alcohol additives on etching characteristics in KOH solutions. Sensors and Actuators A: Physical, 101(3), 255-261. doi:10.1016/s0924-4247(02)00265-0

Charbonnieras, A. R., & Tellier, C. R. (1999). Characterization of the anisotropic chemical attack of {hk0} silicon plates in a T.M.A.H. solution. Sensors and Actuators A: Physical, 77(2), 81-97. doi:10.1016/s0924-4247(99)00020-5

Shikida, M., Sato, K., Tokoro, K., & Uchikawa, D. (2000). Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A: Physical, 80(2), 179-188. doi:10.1016/s0924-4247(99)00264-2

Gosálvez, M. A., Zubel, I., & Viinikka, E. (2010). Wet Etching of Silicon. Handbook of Silicon Based MEMS Materials and Technologies, 375-407. doi:10.1016/b978-0-8155-1594-4.00024-3

Pal, P., Gosalvez, M. A., & Sato, K. (2010). Silicon Micromachining Based on Surfactant-Added Tetramethyl Ammonium Hydroxide: Etching Mechanism and Advanced Applications. Japanese Journal of Applied Physics, 49(5), 056702. doi:10.1143/jjap.49.056702

Zubel, I., & Kramkowska, M. (2004). Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sensors and Actuators A: Physical, 115(2-3), 549-556. doi:10.1016/j.sna.2003.11.010

Fruhauf, J., Trautmann, K., Wittig, J., & Zielke, D. (1993). A simulation tool for orientation dependent etching. Journal of Micromechanics and Microengineering, 3(3), 113-115. doi:10.1088/0960-1317/3/3/004

Than, O., & Büttgenbach, S. (1994). Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata model. Sensors and Actuators A: Physical, 45(1), 85-89. doi:10.1016/0924-4247(94)00820-5

Camon, H., Gue, A. M., Danel, J. S., & Djafari-Rouhani, M. (1992). Modelling of anisotropic etching in silicon-based sensor application. Sensors and Actuators A: Physical, 33(1-2), 103-105. doi:10.1016/0924-4247(92)80237-w

Gosalvez, M. ., Nieminen, R. ., Kilpinen, P., Haimi, E., & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments. Applied Surface Science, 178(1-4), 7-26. doi:10.1016/s0169-4332(01)00233-1

Zhenjun Zhu, & Chang Liu. (2000). Micromachining process simulation using a continuous cellular automata method. Journal of Microelectromechanical Systems, 9(2), 252-261. doi:10.1109/84.846706

Gosalvez, M. A., Yan Xing, & Sato, K. (2008). Analytical Solution of the Continuous Cellular Automaton for Anisotropic Etching. Journal of Microelectromechanical Systems, 17(2), 410-431. doi:10.1109/jmems.2008.916339

Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Faster and exact implementation of the continuous cellular automaton for anisotropic etching simulations. Journal of Micromechanics and Microengineering, 21(2), 025021. doi:10.1088/0960-1317/21/2/025021

Ferrando, N., Gosálvez, M. A., Cerdá, J., Gadea, R., & Sato, K. (2011). Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces. Computer Physics Communications, 182(3), 628-640. doi:10.1016/j.cpc.2010.11.004

Moktadir, Z., & Camon, H. (1997). Monte Carlo simulation of anisotropic etching of silicon: investigation of surface properties. Modelling and Simulation in Materials Science and Engineering, 5(5), 481-488. doi:10.1088/0965-0393/5/5/004

Flidr, J., Huang, Y.-C., & Hines, M. A. (1999). An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces. The Journal of Chemical Physics, 111(15), 6970-6981. doi:10.1063/1.479990

Gos lvez, M. A., & Nieminen, R. M. (2003). Surface morphology during anisotropic wet chemical etching of crystalline silicon. New Journal of Physics, 5, 100-100. doi:10.1088/1367-2630/5/1/400

Xing, Y., Gosálvez, M. A., Sato, K., Tian, M., & Yi, H. (2012). Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 22(8), 085020. doi:10.1088/0960-1317/22/8/085020

Xing, Y., Gosálvez, M. A., Sato, K., & Yi, H. (2009). Orientation-dependent surface morphology of crystalline silicon during anisotropic etching using a continuous cellular automaton. Journal of Micromechanics and Microengineering, 20(1), 015019. doi:10.1088/0960-1317/20/1/015019

Zhou, Z., Huang, Q., Li, W., & Deng, W. (2007). A cellular automaton-based simulator for silicon anisotropic etching processes considering high index planes. Journal of Micromechanics and Microengineering, 17(4), S38-S49. doi:10.1088/0960-1317/17/4/s03

Gosálvez, M. A., Xing, Y., Sato, K., & Nieminen, R. M. (2009). Discrete and continuous cellular automata for the simulation of propagating surfaces. Sensors and Actuators A: Physical, 155(1), 98-112. doi:10.1016/j.sna.2009.08.012

Ferrando, N., Gosálvez, M. A., & Colóm, R. J. (2012). Evolutionary continuous cellular automaton for the simulation of wet etching of quartz. Journal of Micromechanics and Microengineering, 22(2), 025021. doi:10.1088/0960-1317/22/2/025021

Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1), 12-49. doi:10.1016/0021-9991(88)90002-2

Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and Two-Dimensional Simulations. Journal of Computational Physics, 120(1), 128-144. doi:10.1006/jcph.1995.1153

Adalsteinsson, D., & Sethian, J. A. (1995). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography II: Three-Dimensional Simulations. Journal of Computational Physics, 122(2), 348-366. doi:10.1006/jcph.1995.1221

Adalsteinsson, D., & Sethian, J. A. (1997). A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography. Journal of Computational Physics, 138(1), 193-223. doi:10.1006/jcph.1997.5817

Ertl, O., & Selberherr, S. (2009). A fast level set framework for large three-dimensional topography simulations. Computer Physics Communications, 180(8), 1242-1250. doi:10.1016/j.cpc.2009.02.002

Ertl, O., & Selberherr, S. (2010). Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectronic Engineering, 87(1), 20-29. doi:10.1016/j.mee.2009.05.011

Burzynski, T., & Papini, M. (2010). Level set methods for the modelling of surface evolution in the abrasive jet micromachining of features used in MEMS and microfluidic devices. Journal of Micromechanics and Microengineering, 20(8), 085004. doi:10.1088/0960-1317/20/8/085004

Radjenović, B., Lee, J. K., & Radmilović-Radjenović, M. (2006). Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations. Computer Physics Communications, 174(2), 127-132. doi:10.1016/j.cpc.2005.09.010

Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2006). Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon. Applied Physics Letters, 89(21), 213102. doi:10.1063/1.2388860

Branislav, R., & Marija, R.-R. (2010). Level set simulations of the anisotropic wet etching process for device fabrication in nanotechnologies. Hemijska industrija, 64(2), 93-97. doi:10.2298/hemind100205008r

Radjenović, B., Radmilović-Radjenović, M., & Mitrić, M. (2010). Level Set Approach to Anisotropic Wet Etching of Silicon. Sensors, 10(5), 4950-4967. doi:10.3390/s100504950

Radjenović, B., & Radmilović-Radjenović, M. (2011). Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices. Acta Physica Polonica A, 119(3), 447-450. doi:10.12693/aphyspola.119.447

Crandall, M. G., & Lions, P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, 43(167), 1-1. doi:10.1090/s0025-5718-1984-0744921-8

Whitaker, R. T. (1998). International Journal of Computer Vision, 29(3), 203-231. doi:10.1023/a:1008036829907

Gomes, J., & Faugeras, O. (2000). Reconciling Distance Functions and Level Sets. Journal of Visual Communication and Image Representation, 11(2), 209-223. doi:10.1006/jvci.1999.0439

Fukuzawa, K., Terada, S., Shikida, M., Amakawa, H., Zhang, H., & Mitsuya, Y. (2007). Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy. Journal of Applied Physics, 101(3), 034308. doi:10.1063/1.2434825

Schröpfer, G., Labachelerie, M. de, Ballandras, S., & Blind, P. (1998). Collective wet etching of a 3D monolithic silicon seismic mass system. Journal of Micromechanics and Microengineering, 8(2), 77-79. doi:10.1088/0960-1317/8/2/008

Wilke, N., Reed, M. L., & Morrissey, A. (2006). The evolution from convex corner undercut towards microneedle formation: theory and experimental verification. Journal of Micromechanics and Microengineering, 16(4), 808-814. doi:10.1088/0960-1317/16/4/018

Liang, J., Kohsaka, F., Matsuo, T., & Ueda, T. (2007). Wet Etched High Aspect Ratio Microstructures on Quartz for MEMS Applications. IEEJ Transactions on Sensors and Micromachines, 127(7), 337-342. doi:10.1541/ieejsmas.127.337

Hida, H., Shikida, M., Fukuzawa, K., Murakami, S., Sato, K., Asaumi, K., … Sato, K. (2008). Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sensors and Actuators A: Physical, 148(1), 311-318. doi:10.1016/j.sna.2008.08.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem