- -

Full three-dimensional isotropic transformation media

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Full three-dimensional isotropic transformation media

Show full item record

García Meca, C.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ. (2014). Full three-dimensional isotropic transformation media. New Journal of Physics. 16. https://doi.org/10.1088/1367-2630/16/2/023030

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/57195

Files in this item

Item Metadata

Title: Full three-dimensional isotropic transformation media
Author: García Meca, Carlos Ortuño Molinero, Rubén Martí Sendra, Javier Martínez Abietar, Alejandro José
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
We present a method that enables the implementation of full three-dimensional (3D) transformation media with minimized anisotropy. It is based on a special kind of shape-preserving mapping and a subsequent optimization ...[+]
Subjects: Metamaterials , Transformation optics , Quasi-conformal mappings , Cloaking
Copyrigths: Reconocimiento (by)
Source:
New Journal of Physics. (eissn: 1367-2630 )
DOI: 10.1088/1367-2630/16/2/023030
Publisher:
IOP Publishing: Open Access Journals
Publisher version: http://dx.doi.org/10.1088/1367-2630/16/2/023030
Project ID:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/MICINN//TEC2011-28664-C02-02/ES/APPLICATIONS OF METAMATERIALS IN THE OPTICAL RANGE/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F013/
Thanks:
The authors acknowledge support from projects Consolider EMET (CSD2008-00066), TEC 2011-28664-C02-02 and GVA ACOMP/2013/013.
Type: Artículo

References

Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 [+]
Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628

Greenleaf, A., Kurylev, Y., Lassas, M., & Uhlmann, G. (2007). Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.183901

Shalaev, V. M. (2008). PHYSICS: Transforming Light. Science, 322(5900), 384-386. doi:10.1126/science.1166079

Chen, H., Chan, C. T., & Sheng, P. (2010). Transformation optics and metamaterials. Nature Materials, 9(5), 387-396. doi:10.1038/nmat2743

Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045

Chen, H., & Chan, C. T. (2007). Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518. doi:10.1063/1.2803315

Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288

García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009

Norris, A. N., & Shuvalov, A. L. (2011). Elastic cloaking theory. Wave Motion, 48(6), 525-538. doi:10.1016/j.wavemoti.2011.03.002

Zhang, S., Genov, D. A., Sun, C., & Zhang, X. (2008). Cloaking of Matter Waves. Physical Review Letters, 100(12). doi:10.1103/physrevlett.100.123002

Guenneau, S., Amra, C., & Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7), 8207. doi:10.1364/oe.20.008207

Landy, N. I., Kundtz, N., & Smith, D. R. (2010). Designing Three-Dimensional Transformation Optical Media Using Quasiconformal Coordinate Transformations. Physical Review Letters, 105(19). doi:10.1103/physrevlett.105.193902

Urzhumov, Y., Landy, N., & Smith, D. R. (2012). Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves. Journal of Applied Physics, 111(5), 053105. doi:10.1063/1.3691242

Danner, A. J., Tyc, T., & Leonhardt, U. (2011). Controlling birefringence in dielectrics. Nature Photonics, 5(6), 357-359. doi:10.1038/nphoton.2011.53

Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901

Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089

Chen, H., & Zheng, B. (2012). Broadband polygonal invisibility cloak for visible light. Scientific Reports, 2(1). doi:10.1038/srep00255

Landy, N., & Smith, D. R. (2012). A full-parameter unidirectional metamaterial cloak for microwaves. Nature Materials, 12(1), 25-28. doi:10.1038/nmat3476

Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., & Pendry, J. B. (2008). Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures - Fundamentals and Applications, 6(1), 87-95. doi:10.1016/j.photonics.2007.07.013

Rahm, M., Roberts, D. A., Pendry, J. B., & Smith, D. R. (2008). Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16(15), 11555. doi:10.1364/oe.16.011555

Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837

García-Meca, C., Tung, M. M., Galán, J. V., Ortuño, R., Rodríguez-Fortuño, F. J., Martí, J., & Martínez, A. (2011). Squeezing and expanding light without reflections via transformation optics. Optics Express, 19(4), 3562. doi:10.1364/oe.19.003562

Liu, D., Gabrielli, L. H., Lipson, M., & Johnson, S. G. (2013). Transformation inverse design. Optics Express, 21(12), 14223. doi:10.1364/oe.21.014223

(2008). ACM Transactions on Graphics, 27(3). doi:10.1145/1360612

Lipman, Y., & Levin, D. (2010). Derivation and Analysis of Green Coordinates. Computational Methods and Function Theory, 10(1), 167-188. doi:10.1007/bf03321761

Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308

Paillé, G.-P., & Poulin, P. (2012). As-conformal-as-possible discrete volumetric mapping. Computers & Graphics, 36(5), 427-433. doi:10.1016/j.cag.2012.03.014

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record