- -

Postprandial performance of Dexcom® SEVEN® PLUS and Medtronic® Paradigm® Veo : Modeling and statistical analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Postprandial performance of Dexcom® SEVEN® PLUS and Medtronic® Paradigm® Veo : Modeling and statistical analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laguna Sanz, Alejandro José es_ES
dc.contributor.author Rossetti, Paolo es_ES
dc.contributor.author Ampudia Blasco, F. Javier es_ES
dc.contributor.author Vehí, Josep es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.date.accessioned 2015-11-10T13:00:26Z
dc.date.available 2015-11-10T13:00:26Z
dc.date.issued 2014-03
dc.identifier.issn 1746-8094
dc.identifier.uri http://hdl.handle.net/10251/57284
dc.description.abstract [EN] Background Minimizing excessive postprandial glucose excursion is still an unmet need in treating diabetes. This work addresses the analysis and modeling in the postprandial state of two commercial CGM devices. Methods Twelve patients with type 1 diabetes were studied in the postprandial state on four different occasions under controlled conditions. Each time, we performed simultaneous glucose monitoring using the Dexcom SEVEN® PLUS (47 datasets) and the Medtronic Paradigm® Veo™ (42 datasets). The following statistical properties of the error signal were analyzed and modeled sequentially for the two devices: the lag time, the error stationarity, the error probability distribution and the time correlation. Finally, models were built for sensor simulation in silico studies. Results Lag time followed an exponential probability distribution for both monitors (μsevenplus = 108, μveo = 1.69). Standard deviation and mean of the error signal, calculated as time-dependent signals across the population of sensors, were time-varying and correlated with the reference value and its rate of change, respectively. In both cases, a high variability of postprandial behaviors was observed. After non-stationarity compensation, a logistic distribution was obtained for the SEVEN® PLUS error (close to normal distribution). Regarding the Paradigm® Veo™, a multimodal distribution was obtained, which turned into normal after elimination of five “unstable” sensors. Finally, a first order autoregressive model fitted the SEVEN® PLUS error time-series while a third-order filter was necessary for the Paradigm® Veo™. Conclusions The Paradigm® Veo™ device exhibited greater delay variability with higher delay time and higher probability of abnormal sensor behaviors as compared to the SEVEN® PLUS device. In both cases, the observed variability may have important clinical implications in postprandial performance. Therefore, further improvements are needed in calibration algorithms to reduce this variability. es_ES
dc.description.sponsorship The research leading to these results has received funding from the Spanish Ministry of Science and Innovation under grant DPI2010-20764-C02-01, the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement FP7-PEOPLE-2009-IEF, Ref 252085 and the Generalitat Valenciana through Grant GV/2012/085. The authors acknowledge the collaboration of Sara Correa, Geles Viguer and Pepa Gabaldón from the Diabetes Reference Unit in the Clinic University Hospital of Valencia, and the selfless participation of all the patients involved in the experiments from which data were obtained. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biomedical Signal Processing and Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Continuous glucose monitoring es_ES
dc.subject Statistical modeling es_ES
dc.subject Error analysis es_ES
dc.subject Simulation es_ES
dc.subject Modeling errors es_ES
dc.subject Biomedical Systems es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Postprandial performance of Dexcom® SEVEN® PLUS and Medtronic® Paradigm® Veo : Modeling and statistical analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.bspc.2012.12.003
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20764-C02-01/ES/NUEVAS ESTRATEGIAS DE CONTROL GLUCEMICO POSTPRANDIAL MEDIANTE TERAPIA CON BOMBA DE INSULINA EN DIABETES TIPO 1/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/252085/EU/Seeking solutions for the artificial pancreas: new methods for improving continuous glucose monitoring and closed-loop postprandial glycaemic control./
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F085/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Laguna Sanz, AJ.; Rossetti, P.; Ampudia Blasco, FJ.; Vehí, J.; Bondía Company, J. (2014). Postprandial performance of Dexcom® SEVEN® PLUS and Medtronic® Paradigm® Veo : Modeling and statistical analysis. Biomedical Signal Processing and Control. 10:322-331. https://doi.org/10.1016/j.bspc.2012.12.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.bspc.2012.12.003 es_ES
dc.description.upvformatpinicio 322 es_ES
dc.description.upvformatpfin 331 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.senia 234643
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem