- -

Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zura-Bravo, L. es_ES
dc.contributor.author Ah-Hen, K. es_ES
dc.contributor.author Vega-Galvez, A. es_ES
dc.contributor.author García Segovia, Purificación es_ES
dc.contributor.author Lemus-Mondaca, R. es_ES
dc.date.accessioned 2015-11-24T08:26:44Z
dc.date.available 2015-11-24T08:26:44Z
dc.date.issued 2013-10
dc.identifier.issn 0145-8876
dc.identifier.uri http://hdl.handle.net/10251/57968
dc.description.abstract Apple slices dried at 60C were rehydrated at 20, 40 and 60C to analyze the influence of processing temperature on quality attributes and rehydration kinetics. Diffusion coefficient increased with process temperature from 1.36 to 2.37 ¥ 10-9 m2/s. The Weibull model obtained the best fit quality for the experimental data based on statistical test, chi square. Color was not recovered during rehydration and the results indicated that the use of low temperatures is more adequate. Water-holding capacity decreased, while rehydration ratio increased with increasing rehydration temperature, indicating structural modifications. Increasing rehydration temperatures led to a reduction in the glass transition temperature and hardness values of samples. The radical-scavenging activity showed higher antioxidant activity at higher rehydration temperatures rather than at lower temperatures. It was found that rehydration temperature modifies the cell structure and antioxidant capacity of final product. es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support of the Research Department of Universidad de la Serena for the publication of this research. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Journal of Food Process Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidant, apple slices, rehydration kinetics, microstructure es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jfpe.12018
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Zura-Bravo, L.; Ah-Hen, K.; Vega-Galvez, A.; García Segovia, P.; Lemus-Mondaca, R. (2013). Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics. Journal of Food Process Engineering. 36(5):559-571. doi:10.1111/jfpe.12018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/jfpe.12018 es_ES
dc.description.upvformatpinicio 559 es_ES
dc.description.upvformatpfin 571 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 256584 es_ES
dc.contributor.funder Universidad de La Serena es_ES
dc.description.references Abbott, J. A., Saftner, R. A., Gross, K. C., Vinyard, B. T., & Janick, J. (2004). Consumer evaluation and quality measurement of fresh-cut slices of ‘Fuji,’ ‘Golden Delicious,’ ‘GoldRush,’ and ‘Granny Smith’ apples. Postharvest Biology and Technology, 33(2), 127-140. doi:10.1016/j.postharvbio.2003.12.008 es_ES
dc.description.references Aguilera, J. M., Chiralt, A., & Fito, P. (2003). Food dehydration and product structure. Trends in Food Science & Technology, 14(10), 432-437. doi:10.1016/s0924-2244(03)00122-5 es_ES
dc.description.references Aprikian, O., Levrat-Verny, M.-A., Besson, C., Busserolles, J., Rémésy, C., & Demigné, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chemistry, 75(4), 445-452. doi:10.1016/s0308-8146(01)00235-7 es_ES
dc.description.references Bilbao-Sáinz, C., Andrés, A., & Fito, P. (2005). Hydration kinetics of dried apple as affected by drying conditions. Journal of Food Engineering, 68(3), 369-376. doi:10.1016/j.jfoodeng.2004.06.012 es_ES
dc.description.references Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1). doi:10.1186/1475-2891-3-5 es_ES
dc.description.references Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090 es_ES
dc.description.references Chuah, A. M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L.-J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1), 20-28. doi:10.1016/j.foodchem.2008.03.022 es_ES
dc.description.references Cunningham, S. E., McMinn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2007). Modelling water absorption of pasta during soaking. Journal of Food Engineering, 82(4), 600-607. doi:10.1016/j.jfoodeng.2007.03.018 es_ES
dc.description.references Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2008). Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing, 86(1), 15-24. doi:10.1016/j.fbp.2007.10.008 es_ES
dc.description.references Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009 es_ES
dc.description.references García-Pascual, P., Sanjuán, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modelling. Journal of Food Engineering, 72(4), 346-353. doi:10.1016/j.jfoodeng.2004.12.014 es_ES
dc.description.references Gerschenson, L. N., Rojas, A. M., & Marangoni, A. G. (2001). Effects of processing on kiwi fruit dynamic rheological behaviour and tissue structure. Food Research International, 34(1), 1-6. doi:10.1016/s0963-9969(00)00121-6 es_ES
dc.description.references Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86(1), 91-99. doi:10.1016/j.jfoodeng.2007.09.014 es_ES
dc.description.references Kasapis, S. (2005). Glass Transition Phenomena in Dehydrated Model Systems and Foods: A Review. Drying Technology, 23(4), 731-757. doi:10.1081/drt-200054182 es_ES
dc.description.references Kaymak-Ertekin, F. (2002). Drying and Rehydrating Kinetics of Green and Red Peppers. Journal of Food Science, 67(1), 168-175. doi:10.1111/j.1365-2621.2002.tb11378.x es_ES
dc.description.references Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T., & Vasantha Rupasinghe, H. P. (2008). Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5), 396-401. doi:10.1016/j.jfca.2008.03.004 es_ES
dc.description.references Krokida, M. ., & Marinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. Journal of Food Engineering, 57(1), 1-7. doi:10.1016/s0260-8774(02)00214-5 es_ES
dc.description.references Krokida, M. K., & Philippopoulos, C. (2005). Rehydration of Dehydrated Foods. Drying Technology, 23(4), 799-830. doi:10.1081/drt-200054201 es_ES
dc.description.references Lee, K. W., Kim, Y. J., Kim, D.-O., Lee, H. J., & Lee, C. Y. (2003). Major Phenolics in Apple and Their Contribution to the Total Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 51(22), 6516-6520. doi:10.1021/jf034475w es_ES
dc.description.references Lemus-Mondaca, R., Miranda, M., Grau, A. A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica pubescens). Drying Technology, 27(10), 1105-1115. doi:10.1080/07373930903221291 es_ES
dc.description.references Maldonado, S., Arnau, E., & Bertuzzi, M. A. (2010). Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. Journal of Food Engineering, 96(3), 333-341. doi:10.1016/j.jfoodeng.2009.08.017 es_ES
dc.description.references Marabi, A., Livings, S., Jacobson, M., & Saguy, I. S. (2003). Normalized Weibull distribution for modeling rehydration of food particulates. European Food Research and Technology, 217(4), 311-318. doi:10.1007/s00217-003-0719-y es_ES
dc.description.references Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of the same variety. Journal of Food Engineering, 52(4), 337-341. doi:10.1016/s0260-8774(01)00124-8 es_ES
dc.description.references MEDA, L., & RATTI, C. (2005). REHYDRATION OF FREEZE-DRIED STRAWBERRIES AT VARYING TEMPERATURES. Journal of Food Process Engineering, 28(3), 233-246. doi:10.1111/j.1745-4530.2005.00404.x es_ES
dc.description.references Miranda, M., Maureira, H., Rodríguez, K., & Vega-Gálvez, A. (2009). Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. Journal of Food Engineering, 91(2), 297-304. doi:10.1016/j.jfoodeng.2008.09.007 es_ES
dc.description.references Moreira, R., Chenlo, F., Chaguri, L., & Fernandes, C. (2008). Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. Journal of Food Engineering, 86(4), 584-594. doi:10.1016/j.jfoodeng.2007.11.012 es_ES
dc.description.references Pearson, D. A., Tan, C. H., German, J. B., Davis, P. A., & Gershwin, M. E. (1999). Apple juice inhibits human low density lipoprotein oxidation. Life Sciences, 64(21), 1913-1920. doi:10.1016/s0024-3205(99)00137-x es_ES
dc.description.references Que, F., Mao, L., Fang, X., & Wu, T. (2008). Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International Journal of Food Science & Technology, 43(7), 1195-1201. doi:10.1111/j.1365-2621.2007.01590.x es_ES
dc.description.references Resio, A. C., Aguerre, R. J., & Suarez, C. (2006). Hydration kinetics of amaranth grain. Journal of Food Engineering, 72(3), 247-253. doi:10.1016/j.jfoodeng.2004.12.003 es_ES
dc.description.references Sanjuán, N., Simal, S., Bon, J., & Mulet, A. (1999). Modelling of broccoli stems rehydration process. Journal of Food Engineering, 42(1), 27-31. doi:10.1016/s0260-8774(99)00099-0 es_ES
dc.description.references Sanjuán, N., Cárcel, J. A., Clemente, G., & Mulet, A. (2001). Modelling of the rehydration process of brocolli florets. European Food Research and Technology, 212(4), 449-453. doi:10.1007/s002170000277 es_ES
dc.description.references SOLOMON, W. K. (2007). HYDRATION KINETICS OF LUPIN (LUPINUS ALBUS) SEEDS. Journal of Food Process Engineering, 30(1), 119-130. doi:10.1111/j.1745-4530.2007.00098.x es_ES
dc.description.references Taiwo, K. A., Angersbach, A., & Knorr, D. (2002). Rehydration Studies on Pretreated and Osmotically Dehydrated Apple Slices. Journal of Food Science, 67(2), 842-847. doi:10.1111/j.1365-2621.2002.tb10687.x es_ES
dc.description.references TURKMEN, N., SARI, F., & VELIOGLU, Y. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713-718. doi:10.1016/j.foodchem.2004.12.038 es_ES
dc.description.references Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653. doi:10.1016/j.foodchem.2009.04.066 es_ES
dc.description.references Velić, D., Planinić, M., Tomas, S., & Bilić, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97-102. doi:10.1016/j.jfoodeng.2003.09.016 es_ES
dc.description.references Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol Antioxidant Quantity and Quality in Foods:  Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321. doi:10.1021/jf0009293 es_ES
dc.description.references Weerts, A. H., Martin, D. R., Lian, G., & Melrose, J. R. (2005). Modelling the hydration of foodstuffs. Simulation Modelling Practice and Theory, 13(2), 119-128. doi:10.1016/j.simpat.2004.09.001 es_ES
dc.description.references Yoshizawa, Y., Sakurai, K., Kawaii, S., Asari, M., Soejima, J., & Murofushi, N. (2005). Comparison of Antiproliferative and Antioxidant Properties among Nineteen Apple Cultivars. HortScience, 40(5), 1204-1207. doi:10.21273/hortsci.40.5.1204 es_ES
dc.description.references Zhang, M., & Chen, D. (2006). Effects of low temperature soaking on color and texture of green eggplants. Journal of Food Engineering, 74(1), 54-59. doi:10.1016/j.jfoodeng.2005.02.015 es_ES
dc.description.references Zura, L., Uribe, E., Lemus-Mondaca, R., Saavedra-Torrico, J., Vega-Gálvez, A., & Di Scala, K. (2011). Rehydration Capacity of Chilean Papaya (Vasconcellea pubescens): Effect of Process Temperature on Kinetic Parameters and Functional Properties. Food and Bioprocess Technology, 6(3), 844-850. doi:10.1007/s11947-011-0677-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem