Mostrar el registro sencillo del ítem
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.contributor.author | Mora Almerich, José | es_ES |
dc.contributor.author | Fernández-Pousa, Carlos R. | es_ES |
dc.contributor.author | Muñoz Muñoz, Pascual | es_ES |
dc.date.accessioned | 2015-12-17T08:31:26Z | |
dc.date.available | 2015-12-17T08:31:26Z | |
dc.date.issued | 2013-06-17 | |
dc.identifier.uri | http://hdl.handle.net/10251/58923 | |
dc.description.abstract | We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems. (C)2013 Optical Society of America | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO 2013/012; Proof of Concept from the Universitat Politecnica de Valencia SP20120588; Spanish Ministerio de Economia y Competitividad projects TEC2011-29120-C05-02 and -05, and TEC2010-21337 ATOMIC, and FEDER projects UPVOV08-3E-008 and UPVOV10-3E-492. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Integrated optics devices | es_ES |
dc.subject | Wavelength filtering devices | es_ES |
dc.subject | Quantum information and processing | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Quantum model of light transmission in array waveguide gratings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.21.014841 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120588/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-02/ES/APLICACIONES EN FOTONICA DE MICROONDAS DE NANOESTRUCTURAS CUANTICAS SEMICONDUCTORAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Capmany Francoy, J.; Mora Almerich, J.; Fernández-Pousa, CR.; Muñoz Muñoz, P. (2013). Quantum model of light transmission in array waveguide gratings. Optics Express. 21(12):14841-14852. https://doi.org/10.1364/OE.21.014841 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.21.014841 | es_ES |
dc.description.upvformatpinicio | 14841 | es_ES |
dc.description.upvformatpfin | 14852 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 254633 | es_ES |
dc.identifier.eissn | 1094-4087 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Smit, M., van der Tol, J., & Hill, M. (2011). Moore’s law in photonics. Laser & Photonics Reviews, 6(1), 1-13. doi:10.1002/lpor.201100001 | es_ES |
dc.description.references | O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229 | es_ES |
dc.description.references | Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060 | es_ES |
dc.description.references | Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108 | es_ES |
dc.description.references | Matthews, J. C. F., & Thompson, M. G. (2012). An entangled walk of photons. Nature, 484(7392), 47-48. doi:10.1038/nature11035 | es_ES |
dc.description.references | Schwagmann, A., Kalliakos, S., Farrer, I., Griffiths, J. P., Jones, G. A. C., Ritchie, D. A., & Shields, A. J. (2011). On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Applied Physics Letters, 99(26), 261108. doi:10.1063/1.3672214 | es_ES |
dc.description.references | Davanço, M., Ong, J. R., Shehata, A. B., Tosi, A., Agha, I., Assefa, S., … Srinivasan, K. (2012). Telecommunications-band heralded single photons from a silicon nanophotonic chip. Applied Physics Letters, 100(26), 261104. doi:10.1063/1.4711253 | es_ES |
dc.description.references | Ong, J. R., & Mookherjea, S. (2013). Quantum light generation on a silicon chip using waveguides and resonators. Optics Express, 21(4), 5171. doi:10.1364/oe.21.005171 | es_ES |
dc.description.references | Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical phase modulation. Journal of the Optical Society of America B, 27(6), A119. doi:10.1364/josab.27.00a119 | es_ES |
dc.description.references | Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical amplitude modulation. Optics Express, 18(24), 25127. doi:10.1364/oe.18.025127 | es_ES |
dc.description.references | Leonhardt, U. (2003). Quantum physics of simple optical instruments. Reports on Progress in Physics, 66(7), 1207-1249. doi:10.1088/0034-4885/66/7/203 | es_ES |
dc.description.references | Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 | es_ES |
dc.description.references | Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 | es_ES |
dc.description.references | Rahimi-Keshari, S., Broome, M. A., Fickler, R., Fedrizzi, A., Ralph, T. C., & White, A. G. (2013). Direct characterization of linear-optical networks. Optics Express, 21(11), 13450. doi:10.1364/oe.21.013450 | es_ES |