- -

Quantum model of light transmission in array waveguide gratings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantum model of light transmission in array waveguide gratings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Mora Almerich, José es_ES
dc.contributor.author Fernández-Pousa, Carlos R. es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.date.accessioned 2015-12-17T08:31:26Z
dc.date.available 2015-12-17T08:31:26Z
dc.date.issued 2013-06-17
dc.identifier.uri http://hdl.handle.net/10251/58923
dc.description.abstract We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems. (C)2013 Optical Society of America es_ES
dc.description.sponsorship The authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO 2013/012; Proof of Concept from the Universitat Politecnica de Valencia SP20120588; Spanish Ministerio de Economia y Competitividad projects TEC2011-29120-C05-02 and -05, and TEC2010-21337 ATOMIC, and FEDER projects UPVOV08-3E-008 and UPVOV10-3E-492. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integrated optics devices es_ES
dc.subject Wavelength filtering devices es_ES
dc.subject Quantum information and processing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Quantum model of light transmission in array waveguide gratings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.21.014841
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120588/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-02/ES/APLICACIONES EN FOTONICA DE MICROONDAS DE NANOESTRUCTURAS CUANTICAS SEMICONDUCTORAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Capmany Francoy, J.; Mora Almerich, J.; Fernández-Pousa, CR.; Muñoz Muñoz, P. (2013). Quantum model of light transmission in array waveguide gratings. Optics Express. 21(12):14841-14852. https://doi.org/10.1364/OE.21.014841 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.21.014841 es_ES
dc.description.upvformatpinicio 14841 es_ES
dc.description.upvformatpfin 14852 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 254633 es_ES
dc.identifier.eissn 1094-4087
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Smit, M., van der Tol, J., & Hill, M. (2011). Moore’s law in photonics. Laser & Photonics Reviews, 6(1), 1-13. doi:10.1002/lpor.201100001 es_ES
dc.description.references O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229 es_ES
dc.description.references Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060 es_ES
dc.description.references Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108 es_ES
dc.description.references Matthews, J. C. F., & Thompson, M. G. (2012). An entangled walk of photons. Nature, 484(7392), 47-48. doi:10.1038/nature11035 es_ES
dc.description.references Schwagmann, A., Kalliakos, S., Farrer, I., Griffiths, J. P., Jones, G. A. C., Ritchie, D. A., & Shields, A. J. (2011). On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Applied Physics Letters, 99(26), 261108. doi:10.1063/1.3672214 es_ES
dc.description.references Davanço, M., Ong, J. R., Shehata, A. B., Tosi, A., Agha, I., Assefa, S., … Srinivasan, K. (2012). Telecommunications-band heralded single photons from a silicon nanophotonic chip. Applied Physics Letters, 100(26), 261104. doi:10.1063/1.4711253 es_ES
dc.description.references Ong, J. R., & Mookherjea, S. (2013). Quantum light generation on a silicon chip using waveguides and resonators. Optics Express, 21(4), 5171. doi:10.1364/oe.21.005171 es_ES
dc.description.references Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical phase modulation. Journal of the Optical Society of America B, 27(6), A119. doi:10.1364/josab.27.00a119 es_ES
dc.description.references Capmany, J., & Fernández-Pousa, C. R. (2010). Quantum model for electro-optical amplitude modulation. Optics Express, 18(24), 25127. doi:10.1364/oe.18.025127 es_ES
dc.description.references Leonhardt, U. (2003). Quantum physics of simple optical instruments. Reports on Progress in Physics, 66(7), 1207-1249. doi:10.1088/0034-4885/66/7/203 es_ES
dc.description.references Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 es_ES
dc.description.references Rahimi-Keshari, S., Broome, M. A., Fickler, R., Fedrizzi, A., Ralph, T. C., & White, A. G. (2013). Direct characterization of linear-optical networks. Optics Express, 21(11), 13450. doi:10.1364/oe.21.013450 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem