Mostrar el registro sencillo del ítem
dc.contributor.author | Graciá Salgado, Rogelio | es_ES |
dc.contributor.author | García Chocano, Víctor Manuel | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2015-12-21T11:07:53Z | |
dc.date.available | 2015-12-21T11:07:53Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.uri | http://hdl.handle.net/10251/59085 | |
dc.description.abstract | We report the design and the characterization of artificial structures made of periodical distributions of structured cylindrical scatterers embedded in a two-dimensional (2D) waveguide. For certain values of their geometrical parameters they show simultaneously negative effective bulk modulus and negative effective mass density. Here our analysis is focused on the frequencies where they behave like materials with negative density or density near zero (DNZ). The scattering units consist of a rigid cylindrical core surrounded by an anisotropic shell divided in angular sectors. The units are embedded in a 2D waveguide whose height is smaller than the length of the cylinders, which makes the structure quasi-2D. We have obtained the dispersion relation of the surface acoustic waves excited at frequencies with negative effective density. Also, we report phenomena associated with their DNZ behavior, such as tunneling through narrow channels, control of the radiation field, perfect transmission through sharp corners, and power splitting. Preliminary experiments performed on samples with millimeter-scale dimensions demonstrated their single-negative behavior, with the main drawback being the strong losses measured at the frequencies where the negative behavior is observed. | es_ES |
dc.description.sponsorship | Work partially supported by the Spanish Ministry of Economy and Competitivity with References No. TEC 2010-19751 and No. CSD2008-00066 (Consolider Program). The authors also acknowledge support from the U.S. Office of Naval Research (Grant No. N000142161). The authors thanks Francisco Cervera for his technical help in the fabrication of samples and to Matthew Guild for the critical reading of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review B | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustics | es_ES |
dc.subject | Metamaterial | es_ES |
dc.subject | Negative behavior | es_ES |
dc.subject | Near zero density | es_ES |
dc.subject | Surface waves | es_ES |
dc.subject | Tunneling | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevB.88.224305 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N000142161/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Graciá Salgado, R.; García Chocano, VM.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B. 88(22):1-12. https://doi.org/10.1103/PhysRevB.88.224305 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1103/PhysRevB.88.224305 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 88 | es_ES |
dc.description.issue | 22 | es_ES |
dc.relation.senia | 254316 | es_ES |
dc.identifier.eissn | 1550-235X | |
dc.contributor.funder | Office of Naval Research | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202 | es_ES |
dc.description.references | Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2 | es_ES |
dc.description.references | Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 | es_ES |
dc.description.references | Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2010). Sound focusing by gradient index sonic lenses. Applied Physics Letters, 97(10), 104103. doi:10.1063/1.3488349 | es_ES |
dc.description.references | Martin, T. P., Nicholas, M., Orris, G. J., Cai, L.-W., Torrent, D., & Sánchez-Dehesa, J. (2010). Sonic gradient index lens for aqueous applications. Applied Physics Letters, 97(11), 113503. doi:10.1063/1.3489373 | es_ES |
dc.description.references | Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 | es_ES |
dc.description.references | Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 | es_ES |
dc.description.references | Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025 | es_ES |
dc.description.references | Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001 | es_ES |
dc.description.references | García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009 | es_ES |
dc.description.references | Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 | es_ES |
dc.description.references | Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2009). Acoustic metamaterial with negative modulus. Journal of Physics: Condensed Matter, 21(17), 175704. doi:10.1088/0953-8984/21/17/175704 | es_ES |
dc.description.references | Fey, J., & Robertson, W. M. (2011). Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators. Journal of Applied Physics, 109(11), 114903. doi:10.1063/1.3595677 | es_ES |
dc.description.references | García-Chocano, V. M., Graciá-Salgado, R., Torrent, D., Cervera, F., & Sánchez-Dehesa, J. (2012). Quasi-two-dimensional acoustic metamaterial with negative bulk modulus. Physical Review B, 85(18). doi:10.1103/physrevb.85.184102 | es_ES |
dc.description.references | Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 | es_ES |
dc.description.references | Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 | es_ES |
dc.description.references | Yao, S., Zhou, X., & Hu, G. (2010). Investigation of the negative-mass behaviors occurring below a cut-off frequency. New Journal of Physics, 12(10), 103025. doi:10.1088/1367-2630/12/10/103025 | es_ES |
dc.description.references | Park, C. M., Park, J. J., Lee, S. H., Seo, Y. M., Kim, C. K., & Lee, S. H. (2011). Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs. Physical Review Letters, 107(19). doi:10.1103/physrevlett.107.194301 | es_ES |
dc.description.references | Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602 | es_ES |
dc.description.references | Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904 | es_ES |
dc.description.references | Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 | es_ES |
dc.description.references | Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 | es_ES |
dc.description.references | Fok, L., & Zhang, X. (2011). Negative acoustic index metamaterial. Physical Review B, 83(21). doi:10.1103/physrevb.83.214304 | es_ES |
dc.description.references | Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301 | es_ES |
dc.description.references | Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501 | es_ES |
dc.description.references | Graciá-Salgado, R., Torrent, D., & Sánchez-Dehesa, J. (2012). Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells. New Journal of Physics, 14(10), 103052. doi:10.1088/1367-2630/14/10/103052 | es_ES |
dc.description.references | Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018 | es_ES |
dc.description.references | Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447 | es_ES |
dc.description.references | Alù, A., & Engheta, N. (2005). Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1). doi:10.1103/physreve.72.016623 | es_ES |
dc.description.references | Wu, Y., & Li, J. (2013). Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Applied Physics Letters, 102(18), 183105. doi:10.1063/1.4804201 | es_ES |
dc.description.references | Silveirinha, M., & Engheta, N. (2006). Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends usingε-Near-Zero Materials. Physical Review Letters, 97(15). doi:10.1103/physrevlett.97.157403 | es_ES |
dc.description.references | Liu, R., Cheng, Q., Hand, T., Mock, J. J., Cui, T. J., Cummer, S. A., & Smith, D. R. (2008). Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.023903 | es_ES |
dc.description.references | Edwards, B., Alù, A., Young, M. E., Silveirinha, M., & Engheta, N. (2008). Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Physical Review Letters, 100(3). doi:10.1103/physrevlett.100.033903 | es_ES |
dc.description.references | Alù, A., Silveirinha, M. G., Salandrino, A., & Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B, 75(15). doi:10.1103/physrevb.75.155410 | es_ES |
dc.description.references | Fleury, R., & Alù, A. (2013). Extraordinary Sound Transmission through Density-Near-Zero Ultranarrow Channels. Physical Review Letters, 111(5). doi:10.1103/physrevlett.111.055501 | es_ES |
dc.description.references | Wei, Q., Cheng, Y., & Liu, X. (2013). Acoustic total transmission and total reflection in zero-index metamaterials with defects. Applied Physics Letters, 102(17), 174104. doi:10.1063/1.4803919 | es_ES |
dc.description.references | Luo, J., Xu, P., Chen, H., Hou, B., Gao, L., & Lai, Y. (2012). Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Applied Physics Letters, 100(22), 221903. doi:10.1063/1.4723844 | es_ES |
dc.description.references | Edwards, B., Alù, A., Silveirinha, M. G., & Engheta, N. (2009). Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. Journal of Applied Physics, 105(4), 044905. doi:10.1063/1.3074506 | es_ES |
dc.description.references | Ourir, A., Maurel, A., & Pagneux, V. (2013). Tunneling of electromagnetic energy in multiple connected leads using ϵ-near-zero materials. Optics Letters, 38(12), 2092. doi:10.1364/ol.38.002092 | es_ES |