- -

Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Graciá Salgado, Rogelio es_ES
dc.contributor.author García Chocano, Víctor Manuel es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2015-12-21T11:07:53Z
dc.date.available 2015-12-21T11:07:53Z
dc.date.issued 2013-12
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/59085
dc.description.abstract We report the design and the characterization of artificial structures made of periodical distributions of structured cylindrical scatterers embedded in a two-dimensional (2D) waveguide. For certain values of their geometrical parameters they show simultaneously negative effective bulk modulus and negative effective mass density. Here our analysis is focused on the frequencies where they behave like materials with negative density or density near zero (DNZ). The scattering units consist of a rigid cylindrical core surrounded by an anisotropic shell divided in angular sectors. The units are embedded in a 2D waveguide whose height is smaller than the length of the cylinders, which makes the structure quasi-2D. We have obtained the dispersion relation of the surface acoustic waves excited at frequencies with negative effective density. Also, we report phenomena associated with their DNZ behavior, such as tunneling through narrow channels, control of the radiation field, perfect transmission through sharp corners, and power splitting. Preliminary experiments performed on samples with millimeter-scale dimensions demonstrated their single-negative behavior, with the main drawback being the strong losses measured at the frequencies where the negative behavior is observed. es_ES
dc.description.sponsorship Work partially supported by the Spanish Ministry of Economy and Competitivity with References No. TEC 2010-19751 and No. CSD2008-00066 (Consolider Program). The authors also acknowledge support from the U.S. Office of Naval Research (Grant No. N000142161). The authors thanks Francisco Cervera for his technical help in the fabrication of samples and to Matthew Guild for the critical reading of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustics es_ES
dc.subject Metamaterial es_ES
dc.subject Negative behavior es_ES
dc.subject Near zero density es_ES
dc.subject Surface waves es_ES
dc.subject Tunneling es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.88.224305
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N000142161/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Graciá Salgado, R.; García Chocano, VM.; Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2013). Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B. 88(22):1-12. https://doi.org/10.1103/PhysRevB.88.224305 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.88.224305 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 254316 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Office of Naval Research
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Fok, L., Ambati, M., & Zhang, X. (2008). Acoustic Metamaterials. MRS Bulletin, 33(10), 931-934. doi:10.1557/mrs2008.202 es_ES
dc.description.references Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2 es_ES
dc.description.references Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2010). Sound focusing by gradient index sonic lenses. Applied Physics Letters, 97(10), 104103. doi:10.1063/1.3488349 es_ES
dc.description.references Martin, T. P., Nicholas, M., Orris, G. J., Cai, L.-W., Torrent, D., & Sánchez-Dehesa, J. (2010). Sonic gradient index lens for aqueous applications. Applied Physics Letters, 97(11), 113503. doi:10.1063/1.3489373 es_ES
dc.description.references Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Acoustic resonances in two-dimensional radial sonic crystal shells. New Journal of Physics, 12(7), 073034. doi:10.1088/1367-2630/12/7/073034 es_ES
dc.description.references Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 es_ES
dc.description.references Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025 es_ES
dc.description.references Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001 es_ES
dc.description.references García-Meca, C., Carloni, S., Barceló, C., Jannes, G., Sánchez-Dehesa, J., & Martínez, A. (2013). Analogue Transformations in Physics and their Application to Acoustics. Scientific Reports, 3(1). doi:10.1038/srep02009 es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2009). Acoustic metamaterial with negative modulus. Journal of Physics: Condensed Matter, 21(17), 175704. doi:10.1088/0953-8984/21/17/175704 es_ES
dc.description.references Fey, J., & Robertson, W. M. (2011). Compact acoustic bandgap material based on a subwavelength collection of detuned Helmholtz resonators. Journal of Applied Physics, 109(11), 114903. doi:10.1063/1.3595677 es_ES
dc.description.references García-Chocano, V. M., Graciá-Salgado, R., Torrent, D., Cervera, F., & Sánchez-Dehesa, J. (2012). Quasi-two-dimensional acoustic metamaterial with negative bulk modulus. Physical Review B, 85(18). doi:10.1103/physrevb.85.184102 es_ES
dc.description.references Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 es_ES
dc.description.references Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 es_ES
dc.description.references Yao, S., Zhou, X., & Hu, G. (2010). Investigation of the negative-mass behaviors occurring below a cut-off frequency. New Journal of Physics, 12(10), 103025. doi:10.1088/1367-2630/12/10/103025 es_ES
dc.description.references Park, C. M., Park, J. J., Lee, S. H., Seo, Y. M., Kim, C. K., & Lee, S. H. (2011). Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs. Physical Review Letters, 107(19). doi:10.1103/physrevlett.107.194301 es_ES
dc.description.references Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602 es_ES
dc.description.references Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904 es_ES
dc.description.references Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 es_ES
dc.description.references Fok, L., & Zhang, X. (2011). Negative acoustic index metamaterial. Physical Review B, 83(21). doi:10.1103/physrevb.83.214304 es_ES
dc.description.references Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301 es_ES
dc.description.references Xie, Y., Popa, B.-I., Zigoneanu, L., & Cummer, S. A. (2013). Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.175501 es_ES
dc.description.references Graciá-Salgado, R., Torrent, D., & Sánchez-Dehesa, J. (2012). Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells. New Journal of Physics, 14(10), 103052. doi:10.1088/1367-2630/14/10/103052 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics, 13(9), 093018. doi:10.1088/1367-2630/13/9/093018 es_ES
dc.description.references Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447 es_ES
dc.description.references Alù, A., & Engheta, N. (2005). Achieving transparency with plasmonic and metamaterial coatings. Physical Review E, 72(1). doi:10.1103/physreve.72.016623 es_ES
dc.description.references Wu, Y., & Li, J. (2013). Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Applied Physics Letters, 102(18), 183105. doi:10.1063/1.4804201 es_ES
dc.description.references Silveirinha, M., & Engheta, N. (2006). Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends usingε-Near-Zero Materials. Physical Review Letters, 97(15). doi:10.1103/physrevlett.97.157403 es_ES
dc.description.references Liu, R., Cheng, Q., Hand, T., Mock, J. J., Cui, T. J., Cummer, S. A., & Smith, D. R. (2008). Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.023903 es_ES
dc.description.references Edwards, B., Alù, A., Young, M. E., Silveirinha, M., & Engheta, N. (2008). Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Physical Review Letters, 100(3). doi:10.1103/physrevlett.100.033903 es_ES
dc.description.references Alù, A., Silveirinha, M. G., Salandrino, A., & Engheta, N. (2007). Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B, 75(15). doi:10.1103/physrevb.75.155410 es_ES
dc.description.references Fleury, R., & Alù, A. (2013). Extraordinary Sound Transmission through Density-Near-Zero Ultranarrow Channels. Physical Review Letters, 111(5). doi:10.1103/physrevlett.111.055501 es_ES
dc.description.references Wei, Q., Cheng, Y., & Liu, X. (2013). Acoustic total transmission and total reflection in zero-index metamaterials with defects. Applied Physics Letters, 102(17), 174104. doi:10.1063/1.4803919 es_ES
dc.description.references Luo, J., Xu, P., Chen, H., Hou, B., Gao, L., & Lai, Y. (2012). Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Applied Physics Letters, 100(22), 221903. doi:10.1063/1.4723844 es_ES
dc.description.references Edwards, B., Alù, A., Silveirinha, M. G., & Engheta, N. (2009). Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. Journal of Applied Physics, 105(4), 044905. doi:10.1063/1.3074506 es_ES
dc.description.references Ourir, A., Maurel, A., & Pagneux, V. (2013). Tunneling of electromagnetic energy in multiple connected leads using ϵ-near-zero materials. Optics Letters, 38(12), 2092. doi:10.1364/ol.38.002092 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem