- -

Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Lopera, José es_ES
dc.contributor.author Lerma García, José Luis es_ES
dc.date.accessioned 2015-12-30T09:25:04Z
dc.date.available 2015-12-30T09:25:04Z
dc.date.issued 2014-10-03
dc.identifier.issn 0143-1161
dc.identifier.uri http://hdl.handle.net/10251/59300
dc.description This is an author's accepted manuscript of an article published in "International Journal of Remote Sensing" ; Volume 35, Issue 19, 2014; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.960619 es_ES
dc.description.abstract In recent years, light detection and ranging (lidar) systems have been intensively used in different urban applications such as map updating, communication analysis, virtual city modelling, risk assessment, and monitoring. A prerequisite to enhance lidar data content is to differentiate ground (bare earth) points that yield digital terrain models and off-terrain points in order to classify urban objects and vegetation. The increasing demand for a fast and efficient algorithm to extract three-dimensional urban features was the motive behind this work. A new combined approach to extract bare-earth points is proposed, and a novel methodology to automatically classify airborne laser data into different objects in an urban area is presented. In addition, a new concept of angular classification is introduced to differentiate buildings from vegetation and other small objects. The new angular classifier analyses the distribution of bare-earth points around unclassified point clusters to determine whether a cluster can be classified either as building or as vegetation. The experimental results confirm the high accuracy achieved to automatically classify urban objects in flat complex areas. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof International Journal of Remote Sensing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject LIDAR es_ES
dc.subject Classification es_ES
dc.subject Buildings es_ES
dc.subject Vegetation es_ES
dc.subject Small objects es_ES
dc.subject Region growing es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/01431161.2014.960619
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Sánchez Lopera, J.; Lerma García, JL. (2014). Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier. International Journal of Remote Sensing. 35(19):6955-6972. doi:10.1080/01431161.2014.960619 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/01431161.2014.960619 es_ES
dc.description.upvformatpinicio 6955 es_ES
dc.description.upvformatpfin 6972 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 281326 es_ES
dc.description.references Biosca, J. M., & Lerma, J. L. (2008). Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1), 84-98. doi:10.1016/j.isprsjprs.2007.07.010 es_ES
dc.description.references Brovelli, M. A., Cannata, M., & Longoni, U. M. (2004). LIDAR Data Filtering and DTM Interpolation Within GRASS. Transactions in GIS, 8(2), 155-174. doi:10.1111/j.1467-9671.2004.00173.x es_ES
dc.description.references Chen, H., Cheng, M., Li, J., & Liu, Y. (2012). AN ITERATIVE TERRAIN RECOVERY APPROACH TO AUTOMATED DTM GENERATION FROM AIRBORNE LIDAR POINT CLOUDS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B4, 363-368. doi:10.5194/isprsarchives-xxxix-b4-363-2012 es_ES
dc.description.references Chen, Q., Gong, P., Baldocchi, D., & Xie, G. (2007). Filtering Airborne Laser Scanning Data with Morphological Methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175-185. doi:10.14358/pers.73.2.175 es_ES
dc.description.references Evans, J. S., & Hudak, A. T. (2007). A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029-1038. doi:10.1109/tgrs.2006.890412 es_ES
dc.description.references Filin, S., & Pfeifer, N. (2006). Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2), 71-80. doi:10.1016/j.isprsjprs.2005.10.005 es_ES
dc.description.references Haala, N., & Brenner, C. (1999). Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 130-137. doi:10.1016/s0924-2716(99)00010-6 es_ES
dc.description.references Hartfield, K. A., Landau, K. I., & Leeuwen, W. J. D. van. (2011). Fusion of High Resolution Aerial Multispectral and LiDAR Data: Land Cover in the Context of Urban Mosquito Habitat. Remote Sensing, 3(11), 2364-2383. doi:10.3390/rs3112364 es_ES
dc.description.references Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., & Džeroski, S. (2007). Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 108(1), 9-23. doi:10.1016/j.rse.2006.10.013 es_ES
dc.description.references Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. doi:10.1016/s0924-2716(98)00009-4 es_ES
dc.description.references Li, Y. (2013). FILTERING AIRBORNE LIDAR DATA BY AN IMPROVED MORPHOLOGICAL METHOD BASED ON MULTI-GRADIENT ANALYSIS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W1, 191-194. doi:10.5194/isprsarchives-xl-1-w1-191-2013 es_ES
dc.description.references Lindenberger, J. 1993. “Laser-Profilmessungen zur topographischen Geländeaufnahme.” PhD diss., University Stuttgart, Institute of Photogrametry, Munich. es_ES
dc.description.references Matikainen, L., Hyyppä, J., Ahokas, E., Markelin, L., & Kaartinen, H. (2010). Automatic Detection of Buildings and Changes in Buildings for Updating of Maps. Remote Sensing, 2(5), 1217-1248. doi:10.3390/rs2051217 es_ES
dc.description.references Meng, X., Wang, L., & Currit, N. (2009). Morphology-based Building Detection from Airborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 75(4), 437-442. doi:10.14358/pers.75.4.437 es_ES
dc.description.references Mongus, D., & Žalik, B. (2012). Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 1-12. doi:10.1016/j.isprsjprs.2011.10.002 es_ES
dc.description.references Moussa, A., & El-Sheimy, N. (2012). A NEW OBJECT BASED METHOD FOR AUTOMATED EXTRACTION OF URBAN OBJECTS FROM AIRBORNE SENSORS DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 309-314. doi:10.5194/isprsarchives-xxxix-b3-309-2012 es_ES
dc.description.references Pérez-García, J. L., Delgado, J., Cardenal, J., Colomo, C., & Ureña, M. A. (2012). PROGRESSIVE DENSIFICATION AND REGION GROWING METHODS FOR LIDAR DATA CLASSIFICATION. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 155-160. doi:10.5194/isprsarchives-xxxix-b3-155-2012 es_ES
dc.description.references Shaker, A., & El-Ashmawy, N. (2012). LAND COVER INFORMATION EXTRACTION USING LIDAR DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7, 167-172. doi:10.5194/isprsarchives-xxxix-b7-167-2012 es_ES
dc.description.references Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2), 85-101. doi:10.1016/j.isprsjprs.2004.05.004 es_ES
dc.description.references Susaki, J. (2012). Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation. Remote Sensing, 4(6), 1804-1819. doi:10.3390/rs4061804 es_ES
dc.description.references Trinder, J. C., & Salah, M. (2012). AERIAL IMAGES AND LIDAR DATA FUSION FOR DISASTER CHANGE DETECTION. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4, 227-232. doi:10.5194/isprsannals-i-4-227-2012 es_ES
dc.description.references Wang, X., & Li, P. (2013). URBAN BUILDING COLLAPSE DETECTION USING VERY HIGH RESOLUTION IMAGERY AND AIRBORNE LIDAR DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W1, 127-132. doi:10.5194/isprsarchives-xl-7-w1-127-2013 es_ES
dc.description.references Keqi Zhang, Shu-Ching Chen, Whitman, D., Mei-Ling Shyu, Jianhua Yan, & Chengcui Zhang. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882. doi:10.1109/tgrs.2003.810682 es_ES
dc.description.references Zhang, K., & Whitman, D. (2005). Comparison of Three Algorithms for Filtering Airborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 71(3), 313-324. doi:10.14358/pers.71.3.313 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem