Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Lopera, José | es_ES |
dc.contributor.author | Lerma García, José Luis | es_ES |
dc.date.accessioned | 2015-12-30T09:25:04Z | |
dc.date.available | 2015-12-30T09:25:04Z | |
dc.date.issued | 2014-10-03 | |
dc.identifier.issn | 0143-1161 | |
dc.identifier.uri | http://hdl.handle.net/10251/59300 | |
dc.description | This is an author's accepted manuscript of an article published in "International Journal of Remote Sensing" ; Volume 35, Issue 19, 2014; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/01431161.2014.960619 | es_ES |
dc.description.abstract | In recent years, light detection and ranging (lidar) systems have been intensively used in different urban applications such as map updating, communication analysis, virtual city modelling, risk assessment, and monitoring. A prerequisite to enhance lidar data content is to differentiate ground (bare earth) points that yield digital terrain models and off-terrain points in order to classify urban objects and vegetation. The increasing demand for a fast and efficient algorithm to extract three-dimensional urban features was the motive behind this work. A new combined approach to extract bare-earth points is proposed, and a novel methodology to automatically classify airborne laser data into different objects in an urban area is presented. In addition, a new concept of angular classification is introduced to differentiate buildings from vegetation and other small objects. The new angular classifier analyses the distribution of bare-earth points around unclassified point clusters to determine whether a cluster can be classified either as building or as vegetation. The experimental results confirm the high accuracy achieved to automatically classify urban objects in flat complex areas. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | International Journal of Remote Sensing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LIDAR | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Buildings | es_ES |
dc.subject | Vegetation | es_ES |
dc.subject | Small objects | es_ES |
dc.subject | Region growing | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/01431161.2014.960619 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Sánchez Lopera, J.; Lerma García, JL. (2014). Classification of lidar bare-earth points, buildings, vegetation, and small objects based on region growing and angular classifier. International Journal of Remote Sensing. 35(19):6955-6972. doi:10.1080/01431161.2014.960619 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/01431161.2014.960619 | es_ES |
dc.description.upvformatpinicio | 6955 | es_ES |
dc.description.upvformatpfin | 6972 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.senia | 281326 | es_ES |
dc.description.references | Biosca, J. M., & Lerma, J. L. (2008). Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1), 84-98. doi:10.1016/j.isprsjprs.2007.07.010 | es_ES |
dc.description.references | Brovelli, M. A., Cannata, M., & Longoni, U. M. (2004). LIDAR Data Filtering and DTM Interpolation Within GRASS. Transactions in GIS, 8(2), 155-174. doi:10.1111/j.1467-9671.2004.00173.x | es_ES |
dc.description.references | Chen, H., Cheng, M., Li, J., & Liu, Y. (2012). AN ITERATIVE TERRAIN RECOVERY APPROACH TO AUTOMATED DTM GENERATION FROM AIRBORNE LIDAR POINT CLOUDS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B4, 363-368. doi:10.5194/isprsarchives-xxxix-b4-363-2012 | es_ES |
dc.description.references | Chen, Q., Gong, P., Baldocchi, D., & Xie, G. (2007). Filtering Airborne Laser Scanning Data with Morphological Methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175-185. doi:10.14358/pers.73.2.175 | es_ES |
dc.description.references | Evans, J. S., & Hudak, A. T. (2007). A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029-1038. doi:10.1109/tgrs.2006.890412 | es_ES |
dc.description.references | Filin, S., & Pfeifer, N. (2006). Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2), 71-80. doi:10.1016/j.isprsjprs.2005.10.005 | es_ES |
dc.description.references | Haala, N., & Brenner, C. (1999). Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 130-137. doi:10.1016/s0924-2716(99)00010-6 | es_ES |
dc.description.references | Hartfield, K. A., Landau, K. I., & Leeuwen, W. J. D. van. (2011). Fusion of High Resolution Aerial Multispectral and LiDAR Data: Land Cover in the Context of Urban Mosquito Habitat. Remote Sensing, 3(11), 2364-2383. doi:10.3390/rs3112364 | es_ES |
dc.description.references | Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K., & Džeroski, S. (2007). Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 108(1), 9-23. doi:10.1016/j.rse.2006.10.013 | es_ES |
dc.description.references | Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. doi:10.1016/s0924-2716(98)00009-4 | es_ES |
dc.description.references | Li, Y. (2013). FILTERING AIRBORNE LIDAR DATA BY AN IMPROVED MORPHOLOGICAL METHOD BASED ON MULTI-GRADIENT ANALYSIS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W1, 191-194. doi:10.5194/isprsarchives-xl-1-w1-191-2013 | es_ES |
dc.description.references | Lindenberger, J. 1993. “Laser-Profilmessungen zur topographischen Geländeaufnahme.” PhD diss., University Stuttgart, Institute of Photogrametry, Munich. | es_ES |
dc.description.references | Matikainen, L., Hyyppä, J., Ahokas, E., Markelin, L., & Kaartinen, H. (2010). Automatic Detection of Buildings and Changes in Buildings for Updating of Maps. Remote Sensing, 2(5), 1217-1248. doi:10.3390/rs2051217 | es_ES |
dc.description.references | Meng, X., Wang, L., & Currit, N. (2009). Morphology-based Building Detection from Airborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 75(4), 437-442. doi:10.14358/pers.75.4.437 | es_ES |
dc.description.references | Mongus, D., & Žalik, B. (2012). Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 1-12. doi:10.1016/j.isprsjprs.2011.10.002 | es_ES |
dc.description.references | Moussa, A., & El-Sheimy, N. (2012). A NEW OBJECT BASED METHOD FOR AUTOMATED EXTRACTION OF URBAN OBJECTS FROM AIRBORNE SENSORS DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 309-314. doi:10.5194/isprsarchives-xxxix-b3-309-2012 | es_ES |
dc.description.references | Pérez-García, J. L., Delgado, J., Cardenal, J., Colomo, C., & Ureña, M. A. (2012). PROGRESSIVE DENSIFICATION AND REGION GROWING METHODS FOR LIDAR DATA CLASSIFICATION. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 155-160. doi:10.5194/isprsarchives-xxxix-b3-155-2012 | es_ES |
dc.description.references | Shaker, A., & El-Ashmawy, N. (2012). LAND COVER INFORMATION EXTRACTION USING LIDAR DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7, 167-172. doi:10.5194/isprsarchives-xxxix-b7-167-2012 | es_ES |
dc.description.references | Sithole, G., & Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2), 85-101. doi:10.1016/j.isprsjprs.2004.05.004 | es_ES |
dc.description.references | Susaki, J. (2012). Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation. Remote Sensing, 4(6), 1804-1819. doi:10.3390/rs4061804 | es_ES |
dc.description.references | Trinder, J. C., & Salah, M. (2012). AERIAL IMAGES AND LIDAR DATA FUSION FOR DISASTER CHANGE DETECTION. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4, 227-232. doi:10.5194/isprsannals-i-4-227-2012 | es_ES |
dc.description.references | Wang, X., & Li, P. (2013). URBAN BUILDING COLLAPSE DETECTION USING VERY HIGH RESOLUTION IMAGERY AND AIRBORNE LIDAR DATA. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W1, 127-132. doi:10.5194/isprsarchives-xl-7-w1-127-2013 | es_ES |
dc.description.references | Keqi Zhang, Shu-Ching Chen, Whitman, D., Mei-Ling Shyu, Jianhua Yan, & Chengcui Zhang. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882. doi:10.1109/tgrs.2003.810682 | es_ES |
dc.description.references | Zhang, K., & Whitman, D. (2005). Comparison of Three Algorithms for Filtering Airborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 71(3), 313-324. doi:10.14358/pers.71.3.313 | es_ES |