- -

Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

Show full item record

Peris Fajarnes, G.; Defez Garcia, B.; Serrano Salazar, R.; Ruiz, OE. (2013). Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing. Journal of Materials Engineering and Performance. 22(4):936-942. doi:10.1007/s11665-012-0354-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59321

Files in this item

Item Metadata

Title: Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing
Author: Peris Fajarnes, Guillermo Defez Garcia, Beatriz Serrano Salazar, Ricardo Ruiz, Oscar E.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Issued date:
Abstract:
Finding the geometry and properties of a ceramic tile after its firing using simulations, is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for ...[+]
Subjects: Failure analysis , Heat treating , Modeling processes
Copyrigths: Reserva de todos los derechos
Source:
Journal of Materials Engineering and Performance. (issn: 1059-9495 )
DOI: 10.1007/s11665-012-0354-5
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11665-012-0354-5
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s11665-012-0354-5
Type: Artículo

References

ISO. 10545-2:1995, “Ceramic Tiles—Part 2: Determination of Dimensions and Surface Quality,” International Standard Confirmed, International Organization for Standardization, Geneva, Switzerland, 31 Dec 2005

M. Botsch and M. Pauly. Course 23: Geometric Modeling Based on Polygonal Meshes, ACM SIGGRAPH 2007 Courses, 2007

E.A. Olevsky and V. Tikare, Combined Macro-Meso Scale Modeling of Sintering. Part I: Continuum Approach, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 85 [+]
ISO. 10545-2:1995, “Ceramic Tiles—Part 2: Determination of Dimensions and Surface Quality,” International Standard Confirmed, International Organization for Standardization, Geneva, Switzerland, 31 Dec 2005

M. Botsch and M. Pauly. Course 23: Geometric Modeling Based on Polygonal Meshes, ACM SIGGRAPH 2007 Courses, 2007

E.A. Olevsky and V. Tikare, Combined Macro-Meso Scale Modeling of Sintering. Part I: Continuum Approach, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 85

V. Tikare, E.A. Olevsky, and M.V. Braginsky, Combined Macro-Meso Scale Modeling of Sintering. Part II, Mesoscale Simulations, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 94

K. Shinagawa, Finite Element Simulation of Sintering Process: Microscopic Modelling of Powder Compacts and Constitutive Equation for Sintering, JSME Int J., Ser. A, 1996, 39(4), p 565–572

H. Riedel and T. Kraft, Numerical Simulation of Solid State Sintering: Model and Application, J. Eur. Ceram. Soc., 2004, 24, p 345–361

H. Riedel and B. Blug, A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide, Solid Mech. Appl., 2001, 84, p 49–70

J.A. Yeomans, M. Barriere, P. Blanchart, S. Kiani, and J. Pan, Finite Element Analysis of Sintering Deformation Using Densification Data Instead of a Constitutive Law, J. Eur. Ceram. Soc., 2007, 27, p 2377–2383

H. Su and D.L. Johnsonn, Master Sintering Curve: A Practical Approach to Sintering, J. Am. Ceram. Soc., 1996, 79(12), p 3211–3217

H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 1. Problem Statement, Bol. Soc. Esp. Ceram., 2003, 42, p 283–288

H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 2. Profile Calculation, Bol. Soc. Esp. Ceram., 2003, 42, p 353–359

V. Cantavella Soler, et al., “Simulación de la deformación de baldosas cerámicas durante la cocción,” PhD thesis, 1998

W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 1: Mechanical Characteristics, J. Mater. Sci., 1983, 18(1), p 1–50

W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 2: An Examination of Flow Mechanisms, J. Mater. Sci., 1988, 23, p 1–20

M. Mitchell. Engauge Digitizer, 2009

R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009, ISBN 3-900051-07-0

G. Grothendieck, nls2: Non-linear Regression with Brute Force, R package version 0.1-2, 2007

J. Swanson, Ansys 11.0, Ansys, 2008

J.L. Amoros, E. Sanchez, V. Cantavella, and J.C. Jarque, Evolution of the Mechanical Strength of Industrially Dried Ceramic Tiles During Storage, J. Eur. Ceram. Soc., 2003, 23(11), p 1839–1845

[-]

This item appears in the following Collection(s)

Show full item record