- -

Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peris Fajarnes, Guillermo es_ES
dc.contributor.author Defez Garcia, Beatriz es_ES
dc.contributor.author Serrano Salazar, Ricardo es_ES
dc.contributor.author Ruiz, Oscar E. es_ES
dc.date.accessioned 2015-12-30T11:35:34Z
dc.date.available 2015-12-30T11:35:34Z
dc.date.issued 2013-04
dc.identifier.issn 1059-9495
dc.identifier.uri http://hdl.handle.net/10251/59321
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11665-012-0354-5 es_ES
dc.description.abstract Finding the geometry and properties of a ceramic tile after its firing using simulations, is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile. Previous works present limitations because they do not use a model characteristic of ceramics at high temperatures and they oversimplify the simulations. As a response to such shortcomings, this article presents a simulation with a three-dimensional Nortons model, which is characteristic of ceramics at high temperatures. The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body. Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic, and creep deformations is simplified and meaningful. That is achieved because our work found that curvature is the most descriptive parameter of the simulation. Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Engineering and Performance es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Failure analysis es_ES
dc.subject Heat treating es_ES
dc.subject Modeling processes es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11665-012-0354-5
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Peris Fajarnes, G.; Defez Garcia, B.; Serrano Salazar, R.; Ruiz, OE. (2013). Simulation of the Evolution of Floor Covering Ceramic Tiles During the Firing. Journal of Materials Engineering and Performance. 22(4):936-942. doi:10.1007/s11665-012-0354-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11665-012-0354-5 es_ES
dc.description.upvformatpinicio 936 es_ES
dc.description.upvformatpfin 942 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 241034 es_ES
dc.description.references ISO. 10545-2:1995, “Ceramic Tiles—Part 2: Determination of Dimensions and Surface Quality,” International Standard Confirmed, International Organization for Standardization, Geneva, Switzerland, 31 Dec 2005 es_ES
dc.description.references M. Botsch and M. Pauly. Course 23: Geometric Modeling Based on Polygonal Meshes, ACM SIGGRAPH 2007 Courses, 2007 es_ES
dc.description.references E.A. Olevsky and V. Tikare, Combined Macro-Meso Scale Modeling of Sintering. Part I: Continuum Approach, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 85 es_ES
dc.description.references V. Tikare, E.A. Olevsky, and M.V. Braginsky, Combined Macro-Meso Scale Modeling of Sintering. Part II, Mesoscale Simulations, Recent Developments in Computer Modeling of Powder Metallurgy Processes, A. Zavaliangos and A. Laptev, Ed., IOS Press, Amsterdam, The Netherlands, 2001, p 94 es_ES
dc.description.references K. Shinagawa, Finite Element Simulation of Sintering Process: Microscopic Modelling of Powder Compacts and Constitutive Equation for Sintering, JSME Int J., Ser. A, 1996, 39(4), p 565–572 es_ES
dc.description.references H. Riedel and T. Kraft, Numerical Simulation of Solid State Sintering: Model and Application, J. Eur. Ceram. Soc., 2004, 24, p 345–361 es_ES
dc.description.references H. Riedel and B. Blug, A Comprehensive Model for Solid State Sintering and Its Application to Silicon Carbide, Solid Mech. Appl., 2001, 84, p 49–70 es_ES
dc.description.references J.A. Yeomans, M. Barriere, P. Blanchart, S. Kiani, and J. Pan, Finite Element Analysis of Sintering Deformation Using Densification Data Instead of a Constitutive Law, J. Eur. Ceram. Soc., 2007, 27, p 2377–2383 es_ES
dc.description.references H. Su and D.L. Johnsonn, Master Sintering Curve: A Practical Approach to Sintering, J. Am. Ceram. Soc., 1996, 79(12), p 3211–3217 es_ES
dc.description.references H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 1. Problem Statement, Bol. Soc. Esp. Ceram., 2003, 42, p 283–288 es_ES
dc.description.references H. Camacho, M.E. Fuentes, L. Fuentes, A. Garcia, and A. Perez, Stress Distribution Evolution in a Ceramic Body During Firing. Part 2. Profile Calculation, Bol. Soc. Esp. Ceram., 2003, 42, p 353–359 es_ES
dc.description.references V. Cantavella Soler, et al., “Simulación de la deformación de baldosas cerámicas durante la cocción,” PhD thesis, 1998 es_ES
dc.description.references W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 1: Mechanical Characteristics, J. Mater. Sci., 1983, 18(1), p 1–50 es_ES
dc.description.references W.R. Cannon and T.G. Langdon, Review: Creep of Ceramics. Part 2: An Examination of Flow Mechanisms, J. Mater. Sci., 1988, 23, p 1–20 es_ES
dc.description.references M. Mitchell. Engauge Digitizer, 2009 es_ES
dc.description.references R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009, ISBN 3-900051-07-0 es_ES
dc.description.references G. Grothendieck, nls2: Non-linear Regression with Brute Force, R package version 0.1-2, 2007 es_ES
dc.description.references J. Swanson, Ansys 11.0, Ansys, 2008 es_ES
dc.description.references J.L. Amoros, E. Sanchez, V. Cantavella, and J.C. Jarque, Evolution of the Mechanical Strength of Industrially Dried Ceramic Tiles During Storage, J. Eur. Ceram. Soc., 2003, 23(11), p 1839–1845 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem