- -

A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air

Mostrar el registro completo del ítem

Juárez, L.; Costero, AM.; Parra Álvarez, M.; Gil Grau, S.; Sancenón Galarza, F.; Martínez Mañez, R. (2014). A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air. Chemical Communications. 51(9):1725-1727. https://doi.org/10.1039/C4CC08654F

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/59641

Ficheros en el ítem

Metadatos del ítem

Título: A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air
Autor: Juárez, L.Alberto Costero, Ana M. Parra Álvarez, Margarita Gil Grau, Salvador Sancenón Galarza, Félix Martínez Mañez, Ramón
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A novel colorimetric probe for the selective and sensitive detection of NO2 in solution and in air based on a BODIPY core containing an oxime group has been prepared.
Palabras clave: Selective detection , Fluorescent-probe , Nitrogen-Dioxide , Design , Dyes
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/C4CC08654F
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/C4CC08654F
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
Agradecimientos:
We thank the Spanish Government (MAT2012-38429-C04) and Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.
Tipo: Artículo

References

R. J. Heinsohn and R. L.Kabel, Sources and Control of Air Pollution, Prentice Hall, 1999

TUNNICLIFFE, W. (1994). Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. The Lancet, 344(8939-8940), 1733-1736. doi:10.1016/s0140-6736(94)92886-x

Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International Journal of Epidemiology, 29(5), 862-870. doi:10.1093/ije/29.5.862 [+]
R. J. Heinsohn and R. L.Kabel, Sources and Control of Air Pollution, Prentice Hall, 1999

TUNNICLIFFE, W. (1994). Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. The Lancet, 344(8939-8940), 1733-1736. doi:10.1016/s0140-6736(94)92886-x

Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International Journal of Epidemiology, 29(5), 862-870. doi:10.1093/ije/29.5.862

U.S. Environmental Protection Agency (EPA), Office of Environmental Health Hazard Assessment (OEHHA), Non-cancer Health Effects (RELs), California, DC, USA, 1999

Mukherjee, A., Prasanna, M., Lane, M., Go, R., Dunayevskiy, I., Tsekoun, A., & Patel, C. K. N. (2008). Optically multiplexed multi-gas detection using quantum cascade laser photoacoustic spectroscopy. Applied Optics, 47(27), 4884. doi:10.1364/ao.47.004884

Venema, A., Nieuwkoop, E., Vellekoop, M. J., Nieuwenhuizen, M. S., & Barendsz, A. W. (1986). Design aspects of saw gas sensors. Sensors and Actuators, 10(1-2), 47-64. doi:10.1016/0250-6874(86)80034-8

Nomani, M. W. K., Kersey, D., James, J., Diwan, D., Vogt, T., Webb, R. A., & Koley, G. (2011). Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. Sensors and Actuators B: Chemical, 160(1), 251-259. doi:10.1016/j.snb.2011.07.044

Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., … Zhou, C. (2004). Detection of NO2down to ppb Levels Using Individual and Multiple In2O3Nanowire Devices. Nano Letters, 4(10), 1919-1924. doi:10.1021/nl0489283

Choi, S.-W., Katoch, A., Sun, G.-J., Wu, P., & Kim, S. S. (2013). NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles. Journal of Materials Chemistry C, 1(16), 2834. doi:10.1039/c3tc00602f

Liang, X., Yang, S., Li, J., Zhang, H., Diao, Q., Zhao, W., & Lu, G. (2011). Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary. Sensors and Actuators B: Chemical, 158(1), 1-8. doi:10.1016/j.snb.2011.02.051

Wang, R., Li, G., Dong, Y., Chi, Y., & Chen, G. (2013). Carbon Quantum Dot-Functionalized Aerogels for NO2Gas Sensing. Analytical Chemistry, 85(17), 8065-8069. doi:10.1021/ac401880h

Chung, M. G., Kim, D. H., Lee, H. M., Kim, T., Choi, J. H., Seo, D. kyun, … Kim, Y. H. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B: Chemical, 166-167, 172-176. doi:10.1016/j.snb.2012.02.036

OHIRA, S., WANIGASEKARA, E., RUDKEVICH, D., & DASGUPTA, P. (2009). Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta, 77(5), 1814-1820. doi:10.1016/j.talanta.2008.10.024

J. Mokhari , M. R.Naimi-Jamal, H.Hamzehal, 11th international Electronic Conference on Synthetic Organic Chemistry (ECSOC-11), 2007

Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k

Wang, D., Shiraishi, Y., & Hirai, T. (2010). A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Letters, 51(18), 2545-2549. doi:10.1016/j.tetlet.2010.03.013

Xie, X., & Qin, Y. (2011). A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sensors and Actuators B: Chemical, 156(1), 213-217. doi:10.1016/j.snb.2011.04.020

Wang, D., Shiraishi, Y., & Hirai, T. (2011). A BODIPY-based fluorescent chemodosimeter for Cu(ii) driven by an oxidative dehydrogenation mechanism. Chemical Communications, 47(9), 2673. doi:10.1039/c0cc04069j

Sun, H.-B., Liu, S.-J., Ma, T.-C., Song, N.-N., Zhao, Q., & Huang, W. (2011). An excellent BODIPY dye containing a benzo[2,1,3]thiadiazole bridge as a highly selective colorimetric and fluorescent probe for Hg2+ with naked-eye detection. New Journal of Chemistry, 35(6), 1194. doi:10.1039/c0nj00850h

Son, H., Lee, J. H., Kim, Y.-R., Lee, I. S., Han, S., Liu, X., … Jung, J. H. (2012). A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+. The Analyst, 137(17), 3914. doi:10.1039/c2an35704f

Lu, H., Mack, J., Yang, Y., & Shen, Z. (2014). Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev., 43(13), 4778-4823. doi:10.1039/c4cs00030g

Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n

Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070

Jiao, L., Yu, C., Li, J., Wang, Z., Wu, M., & Hao, E. (2009). β-Formyl-BODIPYs from the Vilsmeier−Haack Reaction. The Journal of Organic Chemistry, 74(19), 7525-7528. doi:10.1021/jo901407h

Cheng, G., Fan, J., Sun, W., Sui, K., Jin, X., Wang, J., & Peng, X. (2013). A highly specific BODIPY-based probe localized in mitochondria for HClO imaging. The Analyst, 138(20), 6091. doi:10.1039/c3an01152f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem