Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k
Margelefsky, E. L., Zeidan, R. K., & Davis, M. E. (2008). Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 37(6), 1118. doi:10.1039/b710334b
CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003
[+]
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k
Margelefsky, E. L., Zeidan, R. K., & Davis, M. E. (2008). Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 37(6), 1118. doi:10.1039/b710334b
CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003
Notestein, J. M., & Katz, A. (2006). Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic–Inorganic Interfaces. Chemistry - A European Journal, 12(15), 3954-3965. doi:10.1002/chem.200501152
Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g
Westermann, B., Ayaz, M., & van Berkel, S. S. (2010). Enantiodivergente Organokaskadenreaktionen. Angewandte Chemie, 122(5), 858-861. doi:10.1002/ange.200904638
Westermann, B., Ayaz, M., & van Berkel, S. S. (2009). Enantiodivergent Organocascade Reactions. Angewandte Chemie International Edition, 49(5), 846-849. doi:10.1002/anie.200904638
Nicolaou, K. C., Edmonds, D. J., & Bulger, P. G. (2006). Kaskadenreaktionen in der Totalsynthese. Angewandte Chemie, 118(43), 7292-7344. doi:10.1002/ange.200601872
Nicolaou, K. C., Edmonds, D. J., & Bulger, P. G. (2006). Cascade Reactions in Total Synthesis. Angewandte Chemie International Edition, 45(43), 7134-7186. doi:10.1002/anie.200601872
Grossmann, A., & Enders, D. (2011). Durch N-heterocyclische Carbene katalysierte Dominoreaktionen. Angewandte Chemie, 124(2), 320-332. doi:10.1002/ange.201105415
Grossmann, A., & Enders, D. (2011). N-Heterocyclic Carbene Catalyzed Domino Reactions. Angewandte Chemie International Edition, 51(2), 314-325. doi:10.1002/anie.201105415
Friedman, A. A., Panteleev, J., Tsoung, J., Huynh, V., & Lautens, M. (2013). Rh/Pd Catalysis with Chiral and Achiral Ligands: Domino Synthesis of Aza-Dihydrodibenzoxepines. Angewandte Chemie, 125(37), 9937-9940. doi:10.1002/ange.201303659
Friedman, A. A., Panteleev, J., Tsoung, J., Huynh, V., & Lautens, M. (2013). Rh/Pd Catalysis with Chiral and Achiral Ligands: Domino Synthesis of Aza-Dihydrodibenzoxepines. Angewandte Chemie International Edition, 52(37), 9755-9758. doi:10.1002/anie.201303659
Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA Receptors in the Central Nervous System and Other Organs. A Survey of Cell Biology, 1-47. doi:10.1016/s0074-7696(02)13011-7
Ting Wong, C. G., Bottiglieri, T., & Snead, O. C. (2003). GABA, ?-hydroxybutyric acid, and neurological disease. Annals of Neurology, 54(S6), S3-S12. doi:10.1002/ana.10696
Simpson, M. D. ., Slater, P., & Deakin, J. F. . (1998). Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biological Psychiatry, 44(6), 423-427. doi:10.1016/s0006-3223(98)00077-8
Pearl, P. L., Hartka, T. R., Cabalza, J. L., Taylor, J., & Gibson, M. K. (2006). Inherited disorders of GABA metabolism. Future Neurology, 1(5), 631-636. doi:10.2217/14796708.1.5.631
N’Goka, V., Schlewer, G., Linget, J. M., Chambon, J. P., & Wermuth, C. G. (1991). GABA-uptake inhibitors: construction of a general pharmacophore model and successful prediction of a new representative. Journal of Medicinal Chemistry, 34(8), 2547-2557. doi:10.1021/jm00112a032
Gajcy, K., Lochynski, S., & Librowski, T. (2010). A Role of GABA Analogues in the Treatment of Neurological Diseases. Current Medicinal Chemistry, 17(22), 2338-2347. doi:10.2174/092986710791698549
Olpe, H.-R., Demiéville, H., Baltzer, V., Bencze, W. L., Koella, W. P., Wolf, P., & Haas, H. L. (1978). The biological activity of d-baclofen (Lipresal®). European Journal of Pharmacology, 52(1), 133-136. doi:10.1016/0014-2999(78)90032-8
Lapin, I. (2006). Phenibut (β-Phenyl-GABA): A Tranquilizer and Nootropic Drug. CNS Drug Reviews, 7(4), 471-481. doi:10.1111/j.1527-3458.2001.tb00211.x
Kanes, S. J., Tokarczyk, J., Siegel, S. J., Bilker, W., Abel, T., & Kelly, M. P. (2007). Rolipram: A specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience, 144(1), 239-246. doi:10.1016/j.neuroscience.2006.09.026
Chen, R.-W., Williams, A. J., Liao, Z., Yao, C., Tortella, F. C., & Dave, J. R. (2007). Broad spectrum neuroprotection profile of phosphodiesterase inhibitors as related to modulation of cell-cycle elements and caspase-3 activation. Neuroscience Letters, 418(2), 165-169. doi:10.1016/j.neulet.2007.03.033
Smith, D. L., Pozueta, J., Gong, B., Arancio, O., & Shelanski, M. (2009). Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proceedings of the National Academy of Sciences, 106(39), 16877-16882. doi:10.1073/pnas.0908706106
Wachtel, H. (1983). Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology, 22(3), 267-272. doi:10.1016/0028-3908(83)90239-3
Nibuya, M., Nestler, E., & Duman, R. (1996). Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. The Journal of Neuroscience, 16(7), 2365-2372. doi:10.1523/jneurosci.16-07-02365.1996
Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., & Turnbull, M. (1980). (–)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283(5742), 92-94. doi:10.1038/283092a0
Mann, A., Boulanger, T., Brandau, B., Durant, F., Evrard, G., Heaulme, M., … Wermuth, C. G. (1991). Synthesis and biochemical evaluation of baclofen analogs locked in the baclofen solid-state conformation. Journal of Medicinal Chemistry, 34(4), 1307-1313. doi:10.1021/jm00108a011
Belliotti, T. R., Capiris, T., Ekhato, I. V., Kinsora, J. J., Field, M. J., Heffner, T. G., … Wustrow, D. J. (2005). Structure−Activity Relationships of Pregabalin and Analogues That Target the α2-δ Protein. Journal of Medicinal Chemistry, 48(7), 2294-2307. doi:10.1021/jm049762l
Hynes, P. S., Stupple, P. A., & Dixon, D. J. (2008). Organocatalytic Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of (3S,4R)-Paroxetine. Organic Letters, 10(7), 1389-1391. doi:10.1021/ol800108u
Poe, S. L., Kobašlija, M., & McQuade, D. T. (2007). Mechanism and Application of a Microcapsule Enabled Multicatalyst Reaction. Journal of the American Chemical Society, 129(29), 9216-9221. doi:10.1021/ja071706x
Barnes, D. M., Ji, J., Fickes, M. G., Fitzgerald, M. A., King, S. A., Morton, H. E., … Zhang, J. (2002). Development of a Catalytic Enantioselective Conjugate Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes for the Synthesis of Endothelin-A AntagonistABT-546. Scope, Mechanism, and Further Application to the Synthesis of the Antidepressant Rolipram. Journal of the American Chemical Society, 124(44), 13097-13105. doi:10.1021/ja026788y
Palomo, C., Landa, A., Mielgo, A., Oiarbide, M., Puente, Á., & Vera, S. (2007). Water-Compatible Iminium Activation: Organocatalytic Michael Reactions of Carbon-Centered Nucleophiles with Enals. Angewandte Chemie, 119(44), 8583-8587. doi:10.1002/ange.200703261
Palomo, C., Landa, A., Mielgo, A., Oiarbide, M., Puente, Á., & Vera, S. (2007). Water-Compatible Iminium Activation: Organocatalytic Michael Reactions of Carbon-Centered Nucleophiles with Enals. Angewandte Chemie International Edition, 46(44), 8431-8435. doi:10.1002/anie.200703261
Furutachi, M., Mouri, S., Matsunaga, S., & Shibasaki, M. (2010). A Heterobimetallic Ni/La-salan Complex for Catalytic Asymmetric Decarboxylative 1,4-Addition of Malonic Acid Half-Thioester. Chemistry - An Asian Journal, 5(11), 2351-2354. doi:10.1002/asia.201000540
Bassas, O., Huuskonen, J., Rissanen, K., & Koskinen, A. M. P. (2009). A Simple Organocatalytic Enantioselective Synthesis of Pregabalin. European Journal of Organic Chemistry, 2009(9), 1340-1351. doi:10.1002/ejoc.200801220
Liu, J., Wang, X., Ge, Z., Sun, Q., Cheng, T., & Li, R. (2011). Solvent-free organocatalytic Michael addition of diethyl malonate to nitroalkenes: the practical synthesis of Pregabalin and γ-nitrobutyric acid derivatives. Tetrahedron, 67(3), 636-640. doi:10.1016/j.tet.2010.11.053
Chen, Z., Chen, Z., Jiang, Y., & Hu, W. (2005). The synthesis of baclofen and GABOB via Rh(II) catalyzed intramolecular C–H insertion of α-diazoacetamides. Tetrahedron, 61(6), 1579-1586. doi:10.1016/j.tet.2004.11.077
Okino, T., Hoashi, Y., Furukawa, T., Xu, X., & Takemoto, Y. (2005). Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. Journal of the American Chemical Society, 127(1), 119-125. doi:10.1021/ja044370p
Sheldon, R. A. (2007). The E Factor: fifteen years on. Green Chemistry, 9(12), 1273. doi:10.1039/b713736m
García-García, P., Zagdoun, A., Copéret, C., Lesage, A., Díaz, U., & Corma, A. (2013). In situ preparation of a multifunctional chiral hybrid organic–inorganic catalyst for asymmetric multicomponent reactions. Chemical Science, 4(5), 2006. doi:10.1039/c3sc22310h
Pastre, J. C., Browne, D. L., & Ley, S. V. (2013). Flow chemistry syntheses of natural products. Chemical Society Reviews, 42(23), 8849. doi:10.1039/c3cs60246j
[-]