- -

Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castillo, M.C. es_ES
dc.contributor.author Forment Millet, José Javier es_ES
dc.contributor.author Gadea Vacas, José es_ES
dc.contributor.author Carrasco, JL es_ES
dc.contributor.author Juarez, J. es_ES
dc.contributor.author Navarro, L. es_ES
dc.contributor.author Ancillo, G. es_ES
dc.date.accessioned 2016-01-21T13:49:59Z
dc.date.available 2016-01-21T13:49:59Z
dc.date.issued 2013-11
dc.identifier.issn 0305-7364
dc.identifier.uri http://hdl.handle.net/10251/60112
dc.description.abstract [EN] The juvenile to adult transition (JAT) in higher plants is required for them to reach reproductive competence. However, it is a poorly understood process in woody plants, where only a few genes have been definitely identified as being involved in this transition. This work aims at increasing our understanding of the mechanisms regulating the JAT in citrus. Juvenile and adult plants from Pineapple sweet orange (Citrus sinensis) and Rough lemon (C. jambhiri) were used to screen for differentially expressed transcription factors (TFs) using a 115K microarray developed on the basis of the CitrusTF database. Murcott tangor (C. reticulata C. sinensis) and Duncan grapefruit (C. paradisi) were incorporated into the quantitative real-time reverse transcriptionPCR validation in order to select those genes whose phase-specific regulation was common to the four species. A browsable web database has been created with information about the structural and functional annotation related to 1152 unigenes of putative citrus TFs (CTFs). This database constitutes a valuable resource for research on transcriptional regulation and comparative genomics. Moreover, a microarray has been developed and used that contains these putative CTFs, in order to identify eight genes that showed differential expression in juvenile and adult meristems of four different species of citrus. Those genes have been characterized, and their expression pattern in vegetative and reproductive tissues has been analysed. Four of them are MADS-box genes, a family of TFs involved in developmental processes, whereas another one resembles MADS-box genes but lacks the MADS box itself. The other three showed high partial sequence similarity restricted to specific Arabidopsis protein domains but negligible outside those domains. The work presented here indicates that the JAT in citrus could be controlled by mechanisms that are in part common to those of Arabidopsis, but also somehow different, since specific factors without Arabidopsis orthologues have also been characterized. The potential involvement of the genes in the JAT is discussed. es_ES
dc.description.sponsorship The Bioinformatics Core Service of the IBMCP (UPV-CSIC) is acknowledged for its help in bioinformatic analyses. This work was supported by Conselleria de Agricultura, Pesca y Alimentacion of Generalitat Valenciana [Proy_IVIA09/03] to G.A., and by the Ministry of 'Economia y Competividad'-Fondo Europeo de Desarrollo Regional (FEDER) [AGL2011-26490] and the Ministry of 'Ciencia e Innovacion' [AGL2008-01491] and Prometeo II 2013/008.
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP): Policy B - Oxford Open Option A es_ES
dc.relation.ispartof Annals of Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus sinensis es_ES
dc.subject Citrus jambhiri es_ES
dc.subject Citrus reticulata es_ES
dc.subject Citrus paradisi es_ES
dc.subject Database es_ES
dc.subject Differential gene expression es_ES
dc.subject Juvenile to adult transition es_ES
dc.subject Juvenility es_ES
dc.subject Transcription factor es_ES
dc.subject JAT es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/aob/mct211
dc.relation.projectID info:eu-repo/grantAgreement/IVIA//IVIA09%2F03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-26490/ES/MEJORA DE CITRICOS Y POLIPLOIDIA: APROXIMACIONES GENETICAS Y GENOMICAS PARA LA OBTENCION DE VARIEDADES TRIPLOIDES Y PORTAINJERTOS TETRAPLOIDES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-01491/ES/IDENTIFICACION, DIFUSION Y CARACTERIZACION DE VIROIDES DEL GENERO POSPIVIROIDE./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F008/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Castillo, M.; Forment Millet, JJ.; Gadea Vacas, J.; Carrasco, J.; Juarez, J.; Navarro, L.; Ancillo, G. (2013). Identification of transcription factors potencially involved in the juvenile to adult phase transition in Citrus. Annals of Botany. 112(7):1371-1381. https://doi.org/10.1093/aob/mct211 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/aob/mct211 es_ES
dc.description.upvformatpinicio 1371 es_ES
dc.description.upvformatpfin 1381 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 112 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 254965 es_ES
dc.identifier.pmid 24052558
dc.identifier.pmcid PMC3806540 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Institut Valencià d'Investigacions Agràries
dc.contributor.funder Generalitat Valenciana
dc.description.references Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983 es_ES
dc.description.references Adamczyk, B. J., Lehti-Shiu, M. D., & Fernandez, D. E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant Journal, 50(6), 1007-1019. doi:10.1111/j.1365-313x.2007.03105.x es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Amasino, R. M., & Michaels, S. D. (2010). The Timing of Flowering: Figure 1. Plant Physiology, 154(2), 516-520. doi:10.1104/pp.110.161653 es_ES
dc.description.references Ancillo, G., Gadea, J., Forment, J., Guerri, J., & Navarro, L. (2007). Class prediction of closely related plant varieties using gene expression profiling. Journal of Experimental Botany, 58(8), 1927-1933. doi:10.1093/jxb/erm054 es_ES
dc.description.references Bassene, J. B., Froelicher, Y., Dhuique-Mayer, C., Mouhaya, W., Ferrer, R. M., Ancillo, G., … Ollitrault, P. (2009). Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulata and C. limon: the case of pulp carotenoid biosynthesis pathway. Plant Cell Reports, 28(11), 1689-1697. doi:10.1007/s00299-009-0768-1 es_ES
dc.description.references Bassene, J. B., Froelicher, Y., Dubois, C., Ferrer, R. M., Navarro, L., Ollitrault, P., & Ancillo, G. (2009). Non-additive gene regulation in a citrus allotetraploid somatic hybrid between C. reticulata Blanco and C. limon (L.) Burm. Heredity, 105(3), 299-308. doi:10.1038/hdy.2009.162 es_ES
dc.description.references Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0 es_ES
dc.description.references Bielenberg, D. G., Wang, Y. (Eileen), Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G. L., … Abbott, A. G. (2008). Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes, 4(3), 495-507. doi:10.1007/s11295-007-0126-9 es_ES
dc.description.references Bohlenius, H. (2006). CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science, 312(5776), 1040-1043. doi:10.1126/science.1126038 es_ES
dc.description.references Brill, E. M., & Watson, J. M. (2004). Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Functional Plant Biology, 31(3), 217. doi:10.1071/fp03180 es_ES
dc.description.references Carlsbecker, A., Tandre, K., Johanson, U., Englund, M., & Engström, P. (2004). The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal, 40(4), 546-557. doi:10.1111/j.1365-313x.2004.02226.x es_ES
dc.description.references Chen, H., Rosin, F. M., Prat, S., & Hannapel, D. J. (2003). Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation. Plant Physiology, 132(3), 1391-1404. doi:10.1104/pp.103.022434 es_ES
dc.description.references Chuang, C.-F., Running, M. P., Williams, R. W., & Meyerowitz, E. M. (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes & Development, 13(3), 334-344. doi:10.1101/gad.13.3.334 es_ES
dc.description.references Díaz-Riquelme, J., Lijavetzky, D., Martínez-Zapater, J. M., & Carmona, M. J. (2008). Genome-Wide Analysis of MIKCC-Type MADS Box Genes in Grapevine. Plant Physiology, 149(1), 354-369. doi:10.1104/pp.108.131052 es_ES
dc.description.references Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.-M., … Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl), W13-W17. doi:10.1093/nar/gkr245 es_ES
dc.description.references Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., & Yanofsky, M. F. (2004). The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Current Biology, 14(21), 1935-1940. doi:10.1016/j.cub.2004.10.028 es_ES
dc.description.references Dong, Y.-H., Yao, J.-L., Atkinson, R. G., Putterill, J. J., Morris, B. A., & Gardner, R. C. (2000). Plant Molecular Biology, 42(4), 623-633. doi:10.1023/a:1006301224125 es_ES
dc.description.references Dorca-Fornell, C., Gregis, V., Grandi, V., Coupland, G., Colombo, L., & Kater, M. M. (2011). The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. The Plant Journal, 67(6), 1006-1017. doi:10.1111/j.1365-313x.2011.04653.x es_ES
dc.description.references Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T., & Omura, M. (2005). Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Research, 14(5), 703-712. doi:10.1007/s11248-005-6632-3 es_ES
dc.description.references Endo, T., Shimada, T., Fujii, H., & Omura, M. (2006). Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Scientia Horticulturae, 109(4), 315-321. doi:10.1016/j.scienta.2006.06.008 es_ES
dc.description.references Fernández-Ocaña, A., Carmen García-López, M., Jiménez-Ruiz, J., Saniger, L., Macías, D., Navarro, F., … Luque, F. (2010). Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 6(6), 891-903. doi:10.1007/s11295-010-0299-5 es_ES
dc.description.references Flachowsky, H., Peil, A., Sopanen, T., Elo, A., & Hanke, V. (2007). Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus�נdomestica Borkh.). Plant Breeding, 126(2), 137-145. doi:10.1111/j.1439-0523.2007.01344.x es_ES
dc.description.references Fornara, F., Gregis, V., Pelucchi, N., Colombo, L., & Kater, M. (2008). The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. Journal of Experimental Botany, 59(8), 2181-2190. doi:10.1093/jxb/ern083 es_ES
dc.description.references Gomez-Mena, C. (2005). Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132(3), 429-438. doi:10.1242/dev.01600 es_ES
dc.description.references Honma, T., & Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409(6819), 525-529. doi:10.1038/35054083 es_ES
dc.description.references Huang, X. (1999). CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9), 868-877. doi:10.1101/gr.9.9.868 es_ES
dc.description.references Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyoda, T., … Shinozaki, K. (2005). RARTF: Database and Tools for Complete Sets of Arabidopsis Transcription Factors. DNA Research, 12(4), 247-256. doi:10.1093/dnares/dsi011 es_ES
dc.description.references Kagale, S., Links, M. G., & Rozwadowski, K. (2010). Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis. Plant Physiology, 152(3), 1109-1134. doi:10.1104/pp.109.151704 es_ES
dc.description.references Krizek, B. A., & Fletcher, J. C. (2005). Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics, 6(9), 688-698. doi:10.1038/nrg1675 es_ES
dc.description.references Kumar, R., Kushalappa, K., Godt, D., Pidkowich, M. S., Pastorelli, S., Hepworth, S. R., & Haughn, G. W. (2007). The Arabidopsis BEL1-LIKE HOMEODOMAIN Proteins SAW1 and SAW2 Act Redundantly to Regulate KNOX Expression Spatially in Leaf Margins. The Plant Cell, 19(9), 2719-2735. doi:10.1105/tpc.106.048769 es_ES
dc.description.references Li, Z.-M., Zhang, J.-Z., Mei, L., Deng, X.-X., Hu, C.-G., & Yao, J.-L. (2010). PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Molecular Biology, 74(1-2), 129-142. doi:10.1007/s11103-010-9660-1 es_ES
dc.description.references Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. The Plant Cell, 11(5), 949-956. doi:10.1105/tpc.11.5.949 es_ES
dc.description.references Moon, J., Suh, S.-S., Lee, H., Choi, K.-R., Hong, C. B., Paek, N.-C., … Lee, I. (2003). TheSOC1MADS-box gene integrates vernalization and gibberellin signals for flowering inArabidopsis. The Plant Journal, 35(5), 613-623. doi:10.1046/j.1365-313x.2003.01833.x es_ES
dc.description.references Müller, J., Wang, Y., Franzen, R., Santi, L., Salamini, F., & Rohde, W. (2001). In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. The Plant Journal, 27(1), 13-23. doi:10.1046/j.1365-313x.2001.01064.x es_ES
dc.description.references Muñoz-Fambuena, N., Mesejo, C., Carmen González-Mas, M., Primo-Millo, E., Agustí, M., & Iglesias, D. J. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108(3), 511-519. doi:10.1093/aob/mcr164 es_ES
dc.description.references Navarro, L. (1990). Shoot-Tip Grafting in Vitro of Woody Species and Its Influence on Plant Age. Plant Aging, 117-123. doi:10.1007/978-1-4684-5760-5_14 es_ES
dc.description.references Nishikawa, F., Endo, T., Shimada, T., Fujii, H., Shimizu, T., & Omura, M. (2009). Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiology, 29(7), 921-926. doi:10.1093/treephys/tpp021 es_ES
dc.description.references Peña, L., Martín-Trillo, M., Juárez, J., Pina, J. A., Navarro, L., & Martínez-Zapater, J. M. (2001). Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotechnology, 19(3), 263-267. doi:10.1038/85719 es_ES
dc.description.references Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., & Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405(6783), 200-203. doi:10.1038/35012103 es_ES
dc.description.references Ratcliffe, O. J., Kumimoto, R. W., Wong, B. J., & Riechmann, J. L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING Gene Family: MAF2 Prevents Vernalization by Short Periods of Cold. The Plant Cell, 15(5), 1159-1169. doi:10.1105/tpc.009506 es_ES
dc.description.references Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8 es_ES
dc.description.references Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, 93(10), 4793-4798. doi:10.1073/pnas.93.10.4793 es_ES
dc.description.references Rottmann, W. H., Meilan, R., Sheppard, L. A., Brunner, A. M., Skinner, J. S., Ma, C., … Strauss, S. H. (2000). Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal, 22(3), 235-245. doi:10.1046/j.1365-313x.2000.00734.x es_ES
dc.description.references Samach, A. (2012). Congratulations, you have been carefully chosen to represent an important developmental regulator! Annals of Botany, 111(3), 329-333. doi:10.1093/aob/mcs161 es_ES
dc.description.references Shore, P., & Sharrocks, A. D. (1995). The MADS-Box Family of Transcription Factors. European Journal of Biochemistry, 229(1), 1-13. doi:10.1111/j.1432-1033.1995.tb20430.x es_ES
dc.description.references Simpson, G. G. (2002). Arabidopsis, the Rosetta Stone of Flowering Time? Science, 296(5566), 285-289. doi:10.1126/science.296.5566.285 es_ES
dc.description.references Smith, H. M. ., Campbell, B. C., & Hake, S. (2004). Competence to Respond to Floral Inductive Signals Requires the Homeobox Genes PENNYWISE and POUND-FOOLISH. Current Biology, 14(9), 812-817. doi:10.1016/j.cub.2004.04.032 es_ES
dc.description.references Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138 es_ES
dc.description.references Tan, F.-C., & Swain, S. M. (2006). Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum, 128(1), 8-17. doi:10.1111/j.1399-3054.2006.00724.x es_ES
dc.description.references Tan, F.-C., & Swain, S. M. (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131(3), 481-495. doi:10.1111/j.1399-3054.2007.00971.x es_ES
dc.description.references Tominaga, R., Iwata, M., Sano, R., Inoue, K., Okada, K., & Wada, T. (2008). Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development, 135(7), 1335-1345. doi:10.1242/dev.017947 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Van der Linden, C. G. (2002). Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. Journal of Experimental Botany, 53(371), 1025-1036. doi:10.1093/jexbot/53.371.1025 es_ES
dc.description.references Varkonyi-Gasic, E., Moss, S. M., Voogd, C., Wu, R., Lough, R. H., Wang, Y.-Y., & Hellens, R. P. (2011). Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biology, 11(1), 72. doi:10.1186/1471-2229-11-72 es_ES
dc.description.references Wang, J.-W., Czech, B., & Weigel, D. (2009). miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 138(4), 738-749. doi:10.1016/j.cell.2009.06.014 es_ES
dc.description.references Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turck, F., … Albani, M. C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459(7245), 423-427. doi:10.1038/nature07988 es_ES
dc.description.references Wu, G., Park, M. Y., Conway, S. R., Wang, J.-W., Weigel, D., & Poethig, R. S. (2009). The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 138(4), 750-759. doi:10.1016/j.cell.2009.06.031 es_ES
dc.description.references Xu, Q., Chen, L.-L., Ruan, X., Chen, D., Zhu, A., Chen, C., … Ruan, Y. (2012). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45(1), 59-66. doi:10.1038/ng.2472 es_ES
dc.description.references Zhang, J.-Z., Li, Z.-M., Mei, L., Yao, J.-L., & Hu, C.-G. (2009). PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta, 229(4), 847-859. doi:10.1007/s00425-008-0885-z es_ES
dc.description.references Zhu, Q.-H., Guo, A.-Y., Gao, G., Zhong, Y.-F., Xu, M., Huang, M., & Luo, J. (2007). DPTF: a database of poplar transcription factors. Bioinformatics, 23(10), 1307-1308. doi:10.1093/bioinformatics/btm113 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem