- -

Functionalization of carbon nanofibres obtained by floating catalyst method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functionalization of carbon nanofibres obtained by floating catalyst method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernandez, A. es_ES
dc.contributor.author Peretyagin, P. es_ES
dc.contributor.author Solis, W. es_ES
dc.contributor.author Torrecillas, R. es_ES
dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.date.accessioned 2016-01-29T08:47:39Z
dc.date.available 2016-01-29T08:47:39Z
dc.date.issued 2015
dc.identifier.issn 1687-4110
dc.identifier.uri http://hdl.handle.net/10251/60349
dc.description.abstract The excellent physicochemical and electrical properties of carbon nanofibres (CNF) combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very diverse areas. However, there are still some drawbacks that must be solved in order to optimize their set of properties such as the presence of impurities or the imperfections in the crystalline structure. In this work, different modification treatments of CNFs produced by the floating catalyst method have been studied. Three types of modification processes have been explored that can be grouped as mechanical, thermal, and chemical functionalization processes. Mechanical processing has allowed solving the agglomeration problem related to CNFs produced by floating catalyst method and the resulting modified product ensures the secure handling of carbon nanofibres. Thermal and chemical treatments lead to purer and more crystalline products by removing catalyst impurities and amorphous carbon. Functionalization processes explored in this work open the possibility of customized posttreatment of carbon nanofibres according to the desired requirements. es_ES
dc.description.sponsorship Authors would like to thank Grupo Antolin Ingenieria for providing the starting carbon nanofibre. Authors would also like to thank The Ministry of Education of the Russian Federation for supporting this work by contract no. 14.577.21.0089, unique identifier of contract RFMEFI57714X0089. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Functionalization of carbon nanofibres obtained by floating catalyst method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2015/395014
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//RFMEFI57714X0089/RU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Fernandez, A.; Peretyagin, P.; Solis, W.; Torrecillas, R.; Borrell Tomás, MA. (2015). Functionalization of carbon nanofibres obtained by floating catalyst method. Journal of Nanomaterials. 2015. doi:10.1155/2015/395014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2015/395014 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.relation.senia 283928 es_ES
dc.contributor.funder Ministry of Education and Science of the Russian Federation
dc.description.references Basiuk, E. V., & Basiuk, V. A. (2014). Green Chemistry of Carbon Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 644-672. doi:10.1166/jnn.2014.9011 es_ES
dc.description.references Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Analytica Chimica Acta, 691(1-2), 6-17. doi:10.1016/j.aca.2011.02.025 es_ES
dc.description.references Dai, L., Chang, D. W., Baek, J.-B., & Lu, W. (2012). Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), 1130-1166. doi:10.1002/smll.201101594 es_ES
dc.description.references Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0 es_ES
dc.description.references Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. doi:10.1038/363603a0 es_ES
dc.description.references Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), 605-607. doi:10.1038/363605a0 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., & Merino, C. (2006). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572-1580. doi:10.1016/j.carbon.2005.12.027 es_ES
dc.description.references Tibbetts, G. G., Bernardo, C. A., Gorkiewicz, D. W., & Alig, R. L. (1994). Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 32(4), 569-576. doi:10.1016/0008-6223(94)90074-4 es_ES
dc.description.references Collins, S., Brydson, R., & Rand, B. (2002). Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon, 40(7), 1089-1100. doi:10.1016/s0008-6223(01)00251-2 es_ES
dc.description.references Ci, L., Li, Y., Wei, B., Liang, J., Xu, C., & Wu, D. (2000). Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38(14), 1933-1937. doi:10.1016/s0008-6223(00)00030-0 es_ES
dc.description.references Ci, L., Zhu, H., Wei, B., Liang, J., Xu, C., & Wu, D. (1999). Phosphorus - a new element for promoting growth of carbon filaments by the floating catalyst method. Carbon, 37(10), 1652-1654. doi:10.1016/s0008-6223(99)00166-9 es_ES
dc.description.references Singh, C., Quested, T., Boothroyd, C. B., Thomas, P., Kinloch, I. A., Abou-Kandil, A. I., & Windle, A. H. (2002). Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method. The Journal of Physical Chemistry B, 106(42), 10915-10922. doi:10.1021/jp026159a es_ES
dc.description.references Kim, Y. A., Matusita, T., Hayashi, T., Endo, M., & Dresselhaus, M. S. (2001). Topological changes of vapor grown carbon fibers during heat treatment. Carbon, 39(11), 1747-1752. doi:10.1016/s0008-6223(00)00307-9 es_ES
dc.description.references Lim, S., Yoon, S.-H., Mochida, I., & Chi, J. (2004). Surface Modification of Carbon Nanofiber with High Degree of Graphitization. The Journal of Physical Chemistry B, 108(5), 1533-1536. doi:10.1021/jp036819r es_ES
dc.description.references Chen, J., Shan, J. Y., Tsukada, T., Munekane, F., Kuno, A., Matsuo, M., … Endo, M. (2007). The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 45(2), 274-280. doi:10.1016/j.carbon.2006.09.028 es_ES
dc.description.references Endo, M., Kim, Y. A., Hayashi, T., Yanagisawa, T., Muramatsu, H., Ezaka, M., … Dresselhaus, M. S. (2003). Microstructural changes induced in «stacked cup» carbon nanofibers by heat treatment. Carbon, 41(10), 1941-1947. doi:10.1016/s0008-6223(03)00171-4 es_ES
dc.description.references Andrews, R., Jacques, D., Qian, D., & Dickey, E. C. (2001). Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon, 39(11), 1681-1687. doi:10.1016/s0008-6223(00)00301-8 es_ES
dc.description.references Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., & Tascón, J. M. D. (1994). Raman microprobe studies on carbon materials. Carbon, 32(8), 1523-1532. doi:10.1016/0008-6223(94)90148-1 es_ES
dc.description.references Seuk Youn, H. (2002). Purity enhancement and electrochemical hydrogen storage property of carbon nanofibers grown at low temperature. International Journal of Hydrogen Energy, 27(9), 937-940. doi:10.1016/s0360-3199(01)00194-x es_ES
dc.description.references Lakshminarayanan, P. V., Toghiani, H., & Pittman, C. U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers. Carbon, 42(12-13), 2433-2442. doi:10.1016/j.carbon.2004.04.040 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem