- -

Functionalization of carbon nanofibres obtained by floating catalyst method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functionalization of carbon nanofibres obtained by floating catalyst method

Mostrar el registro completo del ítem

Fernandez, A.; Peretyagin, P.; Solis, W.; Torrecillas, R.; Borrell Tomás, MA. (2015). Functionalization of carbon nanofibres obtained by floating catalyst method. Journal of Nanomaterials. 2015. doi:10.1155/2015/395014

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/60349

Ficheros en el ítem

Metadatos del ítem

Título: Functionalization of carbon nanofibres obtained by floating catalyst method
Autor: Fernandez, A. Peretyagin, P. Solis, W. Torrecillas, R. Borrell Tomás, María Amparo
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
The excellent physicochemical and electrical properties of carbon nanofibres (CNF) combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Nanomaterials. (issn: 1687-4110 )
DOI: 10.1155/2015/395014
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2015/395014
Código del Proyecto:
info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//RFMEFI57714X0089/RU
Agradecimientos:
Authors would like to thank Grupo Antolin Ingenieria for providing the starting carbon nanofibre. Authors would also like to thank The Ministry of Education of the Russian Federation for supporting this work by contract ...[+]
Tipo: Artículo

References

Basiuk, E. V., & Basiuk, V. A. (2014). Green Chemistry of Carbon Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 644-672. doi:10.1166/jnn.2014.9011

Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Analytica Chimica Acta, 691(1-2), 6-17. doi:10.1016/j.aca.2011.02.025

Dai, L., Chang, D. W., Baek, J.-B., & Lu, W. (2012). Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), 1130-1166. doi:10.1002/smll.201101594 [+]
Basiuk, E. V., & Basiuk, V. A. (2014). Green Chemistry of Carbon Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 644-672. doi:10.1166/jnn.2014.9011

Scida, K., Stege, P. W., Haby, G., Messina, G. A., & García, C. D. (2011). Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Analytica Chimica Acta, 691(1-2), 6-17. doi:10.1016/j.aca.2011.02.025

Dai, L., Chang, D. W., Baek, J.-B., & Lu, W. (2012). Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 8(8), 1130-1166. doi:10.1002/smll.201101594

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0

Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. doi:10.1038/363603a0

Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), 605-607. doi:10.1038/363605a0

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., & Merino, C. (2006). Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon, 44(8), 1572-1580. doi:10.1016/j.carbon.2005.12.027

Tibbetts, G. G., Bernardo, C. A., Gorkiewicz, D. W., & Alig, R. L. (1994). Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 32(4), 569-576. doi:10.1016/0008-6223(94)90074-4

Collins, S., Brydson, R., & Rand, B. (2002). Structural analysis of carbon nanofibres grown by the floating catalyst method. Carbon, 40(7), 1089-1100. doi:10.1016/s0008-6223(01)00251-2

Ci, L., Li, Y., Wei, B., Liang, J., Xu, C., & Wu, D. (2000). Preparation of carbon nanofibers by the floating catalyst method. Carbon, 38(14), 1933-1937. doi:10.1016/s0008-6223(00)00030-0

Ci, L., Zhu, H., Wei, B., Liang, J., Xu, C., & Wu, D. (1999). Phosphorus - a new element for promoting growth of carbon filaments by the floating catalyst method. Carbon, 37(10), 1652-1654. doi:10.1016/s0008-6223(99)00166-9

Singh, C., Quested, T., Boothroyd, C. B., Thomas, P., Kinloch, I. A., Abou-Kandil, A. I., & Windle, A. H. (2002). Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method. The Journal of Physical Chemistry B, 106(42), 10915-10922. doi:10.1021/jp026159a

Kim, Y. A., Matusita, T., Hayashi, T., Endo, M., & Dresselhaus, M. S. (2001). Topological changes of vapor grown carbon fibers during heat treatment. Carbon, 39(11), 1747-1752. doi:10.1016/s0008-6223(00)00307-9

Lim, S., Yoon, S.-H., Mochida, I., & Chi, J. (2004). Surface Modification of Carbon Nanofiber with High Degree of Graphitization. The Journal of Physical Chemistry B, 108(5), 1533-1536. doi:10.1021/jp036819r

Chen, J., Shan, J. Y., Tsukada, T., Munekane, F., Kuno, A., Matsuo, M., … Endo, M. (2007). The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing. Carbon, 45(2), 274-280. doi:10.1016/j.carbon.2006.09.028

Endo, M., Kim, Y. A., Hayashi, T., Yanagisawa, T., Muramatsu, H., Ezaka, M., … Dresselhaus, M. S. (2003). Microstructural changes induced in «stacked cup» carbon nanofibers by heat treatment. Carbon, 41(10), 1941-1947. doi:10.1016/s0008-6223(03)00171-4

Andrews, R., Jacques, D., Qian, D., & Dickey, E. C. (2001). Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon, 39(11), 1681-1687. doi:10.1016/s0008-6223(00)00301-8

Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., & Tascón, J. M. D. (1994). Raman microprobe studies on carbon materials. Carbon, 32(8), 1523-1532. doi:10.1016/0008-6223(94)90148-1

Seuk Youn, H. (2002). Purity enhancement and electrochemical hydrogen storage property of carbon nanofibers grown at low temperature. International Journal of Hydrogen Energy, 27(9), 937-940. doi:10.1016/s0360-3199(01)00194-x

Lakshminarayanan, P. V., Toghiani, H., & Pittman, C. U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers. Carbon, 42(12-13), 2433-2442. doi:10.1016/j.carbon.2004.04.040

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem