- -

Evidences of evanescent Bloch waves in phononic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evidences of evanescent Bloch waves in phononic crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.contributor.author Castiñeira Ibáñez, Sergio es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2016-01-29T15:30:18Z
dc.date.available 2016-01-29T15:30:18Z
dc.date.issued 2010
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/60374
dc.description Copyright (2010) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics along with the following message: The following article appeared in “Romero García, V.; Sánchez Pérez, JV.; Castiñeira Ibáñez, S.; García-Raffi, LM. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters. 96:1241021-1241021. doi:10.1063/1.3367739” and may be found at http://dx.doi.org/10.1063/1.3367739. Authors own version of final article on e-print servers es_ES
dc.description.abstract We show both experimentally and theoretically the evanescent behavior of modes in the band gap of finite phononic crystal (PC). Based on experimental and numerical data we obtain the imaginary part of the wave vector in good agreement with the complex band structures obtained by the extended plane wave expansion. The calculated and measured acoustic field of a localized mode out of the point defect inside the PC presents also evanescent behavior. The correct understanding of evanescent modes is fundamental for designing narrow filters and waveguides based on PCs with defects. es_ES
dc.description.sponsorship This work was supported by MEC (Spanish Government) and FEDER funds, under Grant Nos. MAT2009-09438 and MTM2009-14483-C02-02. The authors would like to thank J. M. Herrero, S. Garcia-Nieto, and X. Blasco for their work in the control and acquisition system of 3DReAMS. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Evidences of evanescent Bloch waves in phononic crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3367739
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Romero García, V.; Sánchez Pérez, JV.; Castiñeira Ibáñez, S.; García-Raffi, LM. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters. 96(12):1241021-1241021. doi:10.1063/1.3367739 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3367739 es_ES
dc.description.upvformatpinicio 1241021 es_ES
dc.description.upvformatpfin 1241021 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 96 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 39411 es_ES
dc.identifier.eissn 1077-3118
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Sigalas, M., & Economou, E. N. (1993). Band structure of elastic waves in two dimensional systems. Solid State Communications, 86(3), 141-143. doi:10.1016/0038-1098(93)90888-t es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323 es_ES
dc.description.references Wu, F., Hou, Z., Liu, Z., & Liu, Y. (2001). Point defect states in two-dimensional phononic crystals. Physics Letters A, 292(3), 198-202. doi:10.1016/s0375-9601(01)00800-3 es_ES
dc.description.references Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025 es_ES
dc.description.references Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415 es_ES
dc.description.references Engelen, R. J. P., Mori, D., Baba, T., & Kuipers, L. (2009). Subwavelength Structure of the Evanescent Field of an Optical Bloch Wave. Physical Review Letters, 102(2). doi:10.1103/physrevlett.102.023902 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118 es_ES
dc.description.references Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., & Laude, V. (2003). Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21). doi:10.1103/physrevb.68.214301 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem