- -

Comparison of multivariate statistical methods for dynamic systems modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of multivariate statistical methods for dynamic systems modeling

Mostrar el registro completo del ítem

Barceló Cerdá, S.; Vidal Puig, S.; Ferrer, A. (2011). Comparison of multivariate statistical methods for dynamic systems modeling. Quality and Reliability Engineering International. 27(1):107-124. https://doi.org/10.1002/qre.1102

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61126

Ficheros en el ítem

Metadatos del ítem

Título: Comparison of multivariate statistical methods for dynamic systems modeling
Autor: Barceló Cerdá, Susana Vidal Puig, Santiago Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
In this paper two multivariate statistical methodologies are compared in order to estimate a multi-input multi-output transfer function model in an industrial polymerization process. In these contexts, process variables ...[+]
Palabras clave: Box-Jenkins , MIMO transfer function model , PLS , Process dynamics , Time series , Autocorrelated , Box-Jenkins methodology , Dynamic systems modeling , Estimated model , Goodness of fit , Graphical tools , Linear regression models , Multi-input multi-output , Multivariate statistical method , Multivariate time series , Partial least squares , Polymerization process , Process Modeling , Process Variables , Time dependence , Transfer function model , MIMO systems , Multivariant analysis , Polymerization , Regression analysis , Transfer functions , Time series analysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Quality and Reliability Engineering International. (issn: 0748-8017 )
DOI: 10.1002/qre.1102
Editorial:
Wiley-Blackwell
Versión del editor: http://dx.doi.org/10.1002/qre.1102
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/
Descripción: This is the accepted version of the following article: Barceló, S., Vidal-Puig, S. and Ferrer, A. (2011), Comparison of multivariate statistical methods for dynamic systems modeling. Qual. Reliab. Engng. Int., 27: 107–124, which has been published in final form at http://dx.doi.org/10.1002/qre.1102.
Agradecimientos:
This research was partially supported by the Spanish Government (MICINN) and the European Union (RDE funds) under grant DPI2008-06880-C03-03/DPI.
Tipo: Artículo

References

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118619193

Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. Springer Series in Statistics. doi:10.1007/978-1-4612-0679-8

Wold, S. (1994). Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems, 23(1), 149-161. doi:10.1016/0169-7439(93)e0075-f [+]
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis. Wiley Series in Probability and Statistics. doi:10.1002/9781118619193

Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. Springer Series in Statistics. doi:10.1007/978-1-4612-0679-8

Wold, S. (1994). Exponentially weighted moving principal components analysis and projections to latent structures. Chemometrics and Intelligent Laboratory Systems, 23(1), 149-161. doi:10.1016/0169-7439(93)e0075-f

Wise, B. M., & Ricker, N. L. (1993). Identification of finite impulse response models with continuum regression. Journal of Chemometrics, 7(1), 1-14. doi:10.1002/cem.1180070102

Dayal, B. S., & MacGregor, J. F. (1996). Identification of Finite Impulse Response Models:  Methods and Robustness Issues. Industrial & Engineering Chemistry Research, 35(11), 4078-4090. doi:10.1021/ie960180e

Ferrer, A., Aguado, D., Vidal-Puig, S., Prats, J. M., & Zarzo, M. (2008). PLS: A versatile tool for industrial process improvement and optimization. Applied Stochastic Models in Business and Industry, 24(6), 551-567. doi:10.1002/asmb.716

Hannan, E. J. (1971). The Identification Problem for Multiple Equation Systems with Moving Average Errors. Econometrica, 39(5), 751. doi:10.2307/1909577

Kohn, R. (1979). Identification Results for Armax Structures. Econometrica, 47(5), 1295. doi:10.2307/1911964

Chen, C., & Liu, L.-M. (1993). Joint Estimation of Model Parameters and Outlier Effects in Time Series. Journal of the American Statistical Association, 88(421), 284. doi:10.2307/2290724

Box, G. E. P., & MacGregor, J. F. (1974). The Analysis of Closed-Loop Dynamic-Stochastic Systems. Technometrics, 16(3), 391. doi:10.2307/1267669

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9

Helland, I. S. (1988). On the structure of partial least squares regression. Communications in Statistics - Simulation and Computation, 17(2), 581-607. doi:10.1080/03610918808812681

Höskuldsson, A. (1988). PLS regression methods. Journal of Chemometrics, 2(3), 211-228. doi:10.1002/cem.1180020306

Wold, S., Albano, C., Dunn, W. J., Edlund, U., Esbensen, K., Geladi, P., … Sjöström, M. (1984). Multivariate Data Analysis in Chemistry. Chemometrics, 17-95. doi:10.1007/978-94-017-1026-8_2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem