- -

A chemosensor bearing sulfonyl azide moieties for selective chromo-fluorogenic hydrogen sulfide recognition in aqueous media and in living cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A chemosensor bearing sulfonyl azide moieties for selective chromo-fluorogenic hydrogen sulfide recognition in aqueous media and in living cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santos Figueroa, Luis Enrique es_ES
dc.contributor.author De la Torre Paredes, Cristina es_ES
dc.contributor.author El Sayed Shehata Nasr, Sameh es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Parra, Margarita es_ES
dc.date.accessioned 2016-03-01T15:34:01Z
dc.date.issued 2014-03
dc.identifier.issn 1434-193X
dc.identifier.uri http://hdl.handle.net/10251/61332
dc.description.abstract A simple chemodosimeter based on a sulfonyl azide dye (1-Az), which displayed a highly selective response toward hydrogen sulfide anion in mixed aqueous media, was synthesised and characterised. Addition of hydrogen sulfide to acetonitrile/HEPES 1:1 solutions of 1-Az induced a clear colour change from red-orange to yellow, which was easily detected by the naked eye, and by an enhancement in the emission intensity. Other common anions, thiol-containing biomolecules and oxidants did not induce any noticeable colour or fluorescence modulation in the probe. The chemodosimeter also showed a good sensitivity, with limits of detection of 11.91 and 0.63 μm by using UV/Vis or fluorescence measurements, respectively. Moreover, 1-Az could be used for real-time fluorescence imaging of intracellular HS at micromolar concentrations. es_ES
dc.description.sponsorship The authors thank the Spanish Government (project MAT2012-38429-C04-01), the Generalitat Valenciana (project PROMETEO/2009/016) and CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) for their support. The authors are also grateful to Fundacion Carolina and UPNFM Honduras (doctoral grant to L. E. S.-F.) and the Generalitat Valenciana for Santiago Grisolia (fellowship to S. E. S.). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof European Journal of Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Analytical methods es_ES
dc.subject Sensors es_ES
dc.subject Hydrogen sulfide es_ES
dc.subject Sulfur es_ES
dc.subject Azides es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title A chemosensor bearing sulfonyl azide moieties for selective chromo-fluorogenic hydrogen sulfide recognition in aqueous media and in living cells es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/ejoc.201301514
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Santos Figueroa, LE.; De La Torre Paredes, C.; El Sayed Shehata Nasr, S.; Sancenón Galarza, F.; Martínez-Máñez, R.; Costero Nieto, AM.; Gil Grau, S.... (2014). A chemosensor bearing sulfonyl azide moieties for selective chromo-fluorogenic hydrogen sulfide recognition in aqueous media and in living cells. European Journal of Organic Chemistry. 2014(9):1848-1854. https://doi.org/10.1002/ejoc.201301514 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ejoc.201301514 es_ES
dc.description.upvformatpinicio 1848 es_ES
dc.description.upvformatpfin 1854 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 268736 es_ES
dc.identifier.eissn 1099-0690
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references 1981 Environmental Health Criteria es_ES
dc.description.references R. E. Gosselin R. P. Smith H. C. Hodge Hydrogen Sulfide th es_ES
dc.description.references Ma, H., Cheng, X., Li, G., Chen, S., Quan, Z., Zhao, S., & Niu, L. (2000). The influence of hydrogen sulfide on corrosion of iron under different conditions. Corrosion Science, 42(10), 1669-1683. doi:10.1016/s0010-938x(00)00003-2 es_ES
dc.description.references Carapezza, M. L., Badalamenti, B., Cavarra, L., & Scalzo, A. (2003). Gas hazard assessment in a densely inhabited area of Colli Albani Volcano (Cava dei Selci, Roma). Journal of Volcanology and Geothermal Research, 123(1-2), 81-94. doi:10.1016/s0377-0273(03)00029-5 es_ES
dc.description.references U. S. Geological Survey Open-File 1994 es_ES
dc.description.references Bates, M. N., Garrett, N., & Shoemack, P. (2002). Investigation of Health Effects of Hydrogen Sulfide from a Geothermal Source. Archives of Environmental Health: An International Journal, 57(5), 405-411. doi:10.1080/00039890209601428 es_ES
dc.description.references Mottram, D. S. (1998). Flavour formation in meat and meat products: a review. Food Chemistry, 62(4), 415-424. doi:10.1016/s0308-8146(98)00076-4 es_ES
dc.description.references Schweizer-Berberich, P.-M., Vaihinger, S., & Göpel, W. (1994). Characterisation of food freshness with sensor arrays. Sensors and Actuators B: Chemical, 18(1-3), 282-290. doi:10.1016/0925-4005(94)87095-0 es_ES
dc.description.references Szabó, C. (2007). Hydrogen sulphide and its therapeutic potential. Nature Reviews Drug Discovery, 6(11), 917-935. doi:10.1038/nrd2425 es_ES
dc.description.references Li, L., Rose, P., & Moore, P. K. (2011). Hydrogen Sulfide and Cell Signaling. Annual Review of Pharmacology and Toxicology, 51(1), 169-187. doi:10.1146/annurev-pharmtox-010510-100505 es_ES
dc.description.references Abe, K., & Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience, 16(3), 1066-1071. doi:10.1523/jneurosci.16-03-01066.1996 es_ES
dc.description.references Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., … Wang, R. (2008). H2S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine  -Lyase. Science, 322(5901), 587-590. doi:10.1126/science.1162667 es_ES
dc.description.references Lefer, D. J. (2007). A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. Proceedings of the National Academy of Sciences, 104(46), 17907-17908. doi:10.1073/pnas.0709010104 es_ES
dc.description.references Szabó, G., Veres, G., Radovits, T., Gerő, D., Módis, K., Miesel-Gröschel, C., … Szabó, C. (2011). Cardioprotective effects of hydrogen sulfide. Nitric Oxide, 25(2), 201-210. doi:10.1016/j.niox.2010.11.001 es_ES
dc.description.references Peng, Y.-J., Nanduri, J., Raghuraman, G., Souvannakitti, D., Gadalla, M. M., Kumar, G. K., … Prabhakar, N. R. (2010). H2S mediates O2 sensing in the carotid body. Proceedings of the National Academy of Sciences, 107(23), 10719-10724. doi:10.1073/pnas.1005866107 es_ES
dc.description.references Fiorucci, S., Antonelli, E., Mencarelli, A., Orlandi, S., Renga, B., Rizzo, G., … Morelli, A. (2005). The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 42(3), 539-548. doi:10.1002/hep.20817 es_ES
dc.description.references Eto, K., Asada, T., Arima, K., Makifuchi, T., & Kimura, H. (2002). Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochemical and Biophysical Research Communications, 293(5), 1485-1488. doi:10.1016/s0006-291x(02)00422-9 es_ES
dc.description.references Kamoun, P., Belardinelli, M.-C., Chabli, A., Lallouchi, K., & Chadefaux-Vekemans, B. (2002). Endogenous hydrogen sulfide overproduction in Down syndrome. American Journal of Medical Genetics, 116A(3), 310-311. doi:10.1002/ajmg.a.10847 es_ES
dc.description.references Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R., & Sancenón, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews, 42(8), 3489. doi:10.1039/c3cs35429f es_ES
dc.description.references Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e es_ES
dc.description.references Lippert, A. R., New, E. J., & Chang, C. J. (2011). Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. Journal of the American Chemical Society, 133(26), 10078-10080. doi:10.1021/ja203661j es_ES
dc.description.references Chen, B., Lv, C., & Tang, X. (2012). Chemoselective reduction-based fluorescence probe for detection of hydrogen sulfide in living cells. Analytical and Bioanalytical Chemistry, 404(6-7), 1919-1923. doi:10.1007/s00216-012-6292-0 es_ES
dc.description.references Chen, S., Chen, Z., Ren, W., & Ai, H. (2012). Reaction-Based Genetically Encoded Fluorescent Hydrogen Sulfide Sensors. Journal of the American Chemical Society, 134(23), 9589-9592. doi:10.1021/ja303261d es_ES
dc.description.references Chen, T., Zheng, Y., Xu, Z., Zhao, M., Xu, Y., & Cui, J. (2013). A red emission fluorescent probe for hydrogen sulfide and its application in living cells imaging. Tetrahedron Letters, 54(23), 2980-2982. doi:10.1016/j.tetlet.2013.03.133 es_ES
dc.description.references Das, S. K., Lim, C. S., Yang, S. Y., Han, J. H., & Cho, B. R. (2012). A small molecule two-photon probe for hydrogen sulfide in live tissues. Chemical Communications, 48(67), 8395. doi:10.1039/c2cc33909a es_ES
dc.description.references Peng, H., Cheng, Y., Dai, C., King, A. L., Predmore, B. L., Lefer, D. J., & Wang, B. (2011). A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angewandte Chemie, 123(41), 9846-9849. doi:10.1002/ange.201104236 es_ES
dc.description.references Wu, Z., Li, Z., Yang, L., Han, J., & Han, S. (2012). Fluorogenic detection of hydrogen sulfide via reductive unmasking of o-azidomethylbenzoyl-coumarin conjugate. Chemical Communications, 48(81), 10120. doi:10.1039/c2cc34682f es_ES
dc.description.references Yu, F., Li, P., Song, P., Wang, B., Zhao, J., & Han, K. (2012). An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chemical Communications, 48(23), 2852. doi:10.1039/c2cc17658k es_ES
dc.description.references Singha, S., Kim, D., Rao, A. S., Wang, T., Kim, K. H., Lee, K.-H., … Ahn, K. H. (2013). Two-photon probes based on arylsulfonyl azides: Fluorescence detection and imaging of biothiols. Dyes and Pigments, 99(2), 308-315. doi:10.1016/j.dyepig.2013.05.008 es_ES
dc.description.references Xuan, W., Pan, R., Cao, Y., Liu, K., & Wang, W. (2012). A fluorescent probe capable of detecting H2S at submicromolar concentrations in cells. Chemical Communications, 48(86), 10669. doi:10.1039/c2cc35602c es_ES
dc.description.references Montoya, L. A., & Pluth, M. D. (2012). Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chemical Communications, 48(39), 4767. doi:10.1039/c2cc30730h es_ES
dc.description.references Wu, M.-Y., Li, K., Hou, J.-T., Huang, Z., & Yu, X.-Q. (2012). A selective colorimetric and ratiometric fluorescent probe for hydrogen sulfide. Organic & Biomolecular Chemistry, 10(41), 8342. doi:10.1039/c2ob26235e es_ES
dc.description.references Liu, C., Pan, J., Li, S., Zhao, Y., Wu, L. Y., Berkman, C. E., … Xian, M. (2011). Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angewandte Chemie, 123(44), 10511-10513. doi:10.1002/ange.201104305 es_ES
dc.description.references Xu, Z., Xu, L., Zhou, J., Xu, Y., Zhu, W., & Qian, X. (2012). A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chemical Communications, 48(88), 10871. doi:10.1039/c2cc36141h es_ES
dc.description.references Cao, X., Lin, W., Zheng, K., & He, L. (2012). A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether. Chemical Communications, 48(85), 10529. doi:10.1039/c2cc34031c es_ES
dc.description.references Liu, C., Peng, B., Li, S., Park, C.-M., Whorton, A. R., & Xian, M. (2012). Reaction Based Fluorescent Probes for Hydrogen Sulfide. Organic Letters, 14(8), 2184-2187. doi:10.1021/ol3008183 es_ES
dc.description.references Sasakura, K., Hanaoka, K., Shibuya, N., Mikami, Y., Kimura, Y., Komatsu, T., … Nagano, T. (2011). Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. Journal of the American Chemical Society, 133(45), 18003-18005. doi:10.1021/ja207851s es_ES
dc.description.references Hou, F., Cheng, J., Xi, P., Chen, F., Huang, L., Xie, G., … Zeng, Z. (2012). Recognition of copper and hydrogen sulfide in vitro using a fluorescein derivative indicator. Dalton Transactions, 41(19), 5799. doi:10.1039/c2dt12462a es_ES
dc.description.references Hou, F., Huang, L., Xi, P., Cheng, J., Zhao, X., Xie, G., … Zeng, Z. (2012). A Retrievable and Highly Selective Fluorescent Probe for Monitoring Sulfide and Imaging in Living Cells. Inorganic Chemistry, 51(4), 2454-2460. doi:10.1021/ic2024082 es_ES
dc.description.references Wang, M.-Q., Li, K., Hou, J.-T., Wu, M.-Y., Huang, Z., & Yu, X.-Q. (2012). BINOL-Based Fluorescent Sensor for Recognition of Cu(II) and Sulfide Anion in Water. The Journal of Organic Chemistry, 77(18), 8350-8354. doi:10.1021/jo301196m es_ES
dc.description.references Wang, B., Li, P., Yu, F., Song, P., Sun, X., Yang, S., … Han, K. (2013). A reversible fluorescence probe based on Se–BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem. Commun., 49(10), 1014-1016. doi:10.1039/c2cc37803e es_ES
dc.description.references Wang, B., Li, P., Yu, F., Chen, J., Qu, Z., & Han, K. (2013). A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. Chemical Communications, 49(51), 5790. doi:10.1039/c3cc42313a es_ES
dc.description.references Zhao, Y., Zhu, X., Kan, H., Wang, W., Zhu, B., Du, B., & Zhang, X. (2012). A highly selective colorimetric chemodosimeter for fast and quantitative detection of hydrogen sulfide. The Analyst, 137(23), 5576. doi:10.1039/c2an36106j es_ES
dc.description.references Montoya, L. A., Pearce, T. F., Hansen, R. J., Zakharov, L. N., & Pluth, M. D. (2013). Development of Selective Colorimetric Probes for Hydrogen Sulfide Based on Nucleophilic Aromatic Substitution. The Journal of Organic Chemistry, 78(13), 6550-6557. doi:10.1021/jo4008095 es_ES
dc.description.references Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336 es_ES
dc.description.references Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954 es_ES
dc.description.references Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111 es_ES
dc.description.references Dabbagh, H. A., Teimouri, A., & Chermahini, A. N. (2007). Green and efficient diazotization and diazo coupling reactions on clays. Dyes and Pigments, 73(2), 239-244. doi:10.1016/j.dyepig.2005.12.002 es_ES
dc.description.references Hoffman, M., Rajapakse, A., Shen, X., & Gates, K. S. (2012). Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under Physiologically Relevant Conditions: Chemistry Relevant to Both the Genotoxic and Cell Signaling Properties of H2S. Chemical Research in Toxicology, 25(8), 1609-1615. doi:10.1021/tx300066z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem