Mostrar el registro sencillo del ítem
dc.contributor.author | Manin, Julien | es_ES |
dc.contributor.author | Kastengren, Alan | es_ES |
dc.contributor.author | Payri, Raul | es_ES |
dc.date.accessioned | 2016-03-07T12:41:04Z | |
dc.date.issued | 2012-12 | |
dc.identifier.issn | 0742-4795 | |
dc.identifier.uri | http://hdl.handle.net/10251/61524 | |
dc.description.abstract | Measuring the rate of injection of a common-rail injector is one of the first steps for diesel engine development. The injected quantity as a function of time is of prime interest for engine research and modeling activities, as it drives spray development and mixing, which, in current diesel engines, control combustion. On the other hand, the widely used long-tube method provides results that are neither straightforward nor fully understood. This study, performed on a 0.09-mm axially drilled single-hole nozzle, is part of the Engine Combustion Network (ECN) and aims at analyzing the acoustic oscillations observed in the rate of injection signal and measuring their impact on the real injection process and on the results recorded by the experimental devices. Several tests have been carried out for this study, including rate of injection and momentum, X-ray phase-contrast of the injector, and needle motion or injector displacement. The acoustic analysis revealed that these fluctuations found their origin in the sac of the injector and that they were the results of an interaction between the fluid in the chamber (generally gases) or in the nozzle sac and the liquid fuel to be injected. It has been observed that the relatively high oscillations recorded by the long-tube method were mainly caused by a displacement of the injector itself while injecting. In addition, the results showed that these acoustic features are also present in the spray, which means that the oscillations make it out of the injector, and that this temporal variation must be reflected in the actual rate of injection | es_ES |
dc.description.sponsorship | The authors want to thank both Christopher Powell from Argonne National Laboratory and Jose Enrique del Rey from CMT-Motores Termicos for their support during the experiments. The X-ray measurements in this work were performed at the 7-BM and 32-ID beamlines of the Advanced Photon Source, Argonne National Laboratory. The work performed at Argonne and the use of the APS are supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and by the Department of Energy Vehicle Technologies Program. The authors acknowledge the support of this work from the Department of Energy Vehicle Technologies Program, with Gurpreet Singh as a Team Leader. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Mechanical Engineers (ASME) | es_ES |
dc.relation.ispartof | Journal of Engineering for Gas Turbines and Power | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | METHODOLOGY | es_ES |
dc.subject | GEOMETRY | es_ES |
dc.subject | NOZZLE | es_ES |
dc.subject | FLOW | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Understanding the acoustic oscillations observed in the injection rate of a common-rail direct injection diesel injector | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1115/1.4007276 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Manin, J.; Kastengren, A.; Payri, R. (2012). Understanding the acoustic oscillations observed in the injection rate of a common-rail direct injection diesel injector. Journal of Engineering for Gas Turbines and Power. 134(12):1-10. https://doi.org/10.1115/1.4007276 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1115/1.4007276 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 134 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 233852 | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.description.references | MUSCULUS, M. P. B. (2009). Entrainment waves in decelerating transient turbulent jets. Journal of Fluid Mechanics, 638, 117-140. doi:10.1017/s0022112009990826 | es_ES |
dc.description.references | PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & García, A. (2011). Flow regime effects over non-cavitating diesel injection nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(1), 133-144. doi:10.1177/0954407011413056 | es_ES |
dc.description.references | Payri, R., Climent, H., Salvador, F. J., & Favennec, A. G. (2004). Diesel Injection System Modelling. Methodology and Application for a First-generation Common Rail System. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 81-91. doi:10.1243/095440704322829191 | es_ES |
dc.description.references | Pickett, L. M., Genzale, C. L., Bruneaux, G., Malbec, L.-M., Hermant, L., Christiansen, C., & Schramm, J. (2010). Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities. SAE International Journal of Engines, 3(2), 156-181. doi:10.4271/2010-01-2106 | es_ES |
dc.description.references | Potz, D., Chirst, W., and Dittus, B., 2000, “Diesel Nozzle: The Determining Interface Between Injection System and Combustion Chamber,” THIESEL 2000 Conference on Thermo and Fluid-Dynamic Processes in Diesel Engines, Valencia, Spain, September 13–15. | es_ES |
dc.description.references | Lichtarowicz, A., Duggins, R. K., & Markland, E. (1965). Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices. Journal of Mechanical Engineering Science, 7(2), 210-219. doi:10.1243/jmes_jour_1965_007_029_02 | es_ES |
dc.description.references | Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x | es_ES |
dc.description.references | Kastengren, A. L., Powell, C. F., Wang, Y., Im, K.-S., & Wang, J. (2009). X-RAY RADIOGRAPHY MEASUREMENTS OF DIESEL SPRAY STRUCTURE AT ENGINE-LIKE AMBIENT DENSITY. Atomization and Sprays, 19(11), 1031-1044. doi:10.1615/atomizspr.v19.i11.30 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 30(4), 768-777. doi:10.1016/j.ijheatfluidflow.2009.03.011 | es_ES |
dc.description.references | Crane, L., Birch, S., & McCormack, P. D. (1964). The effect of mechanical vibration on the break-up of a cylindrical water jet in air. British Journal of Applied Physics, 15(6), 743-750. doi:10.1088/0508-3443/15/6/319 | es_ES |
dc.description.references | Powell, C. F., Kastengren, A. L., Liu, Z., & Fezzaa, K. (2010). The Effects of Diesel Injector Needle Motion on Spray Structure. Journal of Engineering for Gas Turbines and Power, 133(1). doi:10.1115/1.4001073 | es_ES |