- -

Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications

Show full item record

Gorbe, M.; Barba Bon, A.; De La Torre, C.; Gil Grau, S.; Costero Nieto, AM.; Sancenón Galarza, F.; Murguía, JR.... (2015). Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications. Chemistry - An Asian Journal. 10(10):2121-2125. https://doi.org/10.1002/asia.201500325

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/61559

Files in this item

Item Metadata

Title: Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications
Author: Gorbe, Mónica Barba Bon, Andrea De la Torre, Cristina Gil Grau, Salvador Costero Nieto, Ana María Sancenón Galarza, Félix Murguía, Jose R. Martínez-Máñez, Ramón
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (e=77600 cm-1M-1) and an emission ...[+]
Subjects: Bodipy , fluorescence , photochemistry , photodynamic therapy , sensors
Copyrigths: Cerrado
Source:
Chemistry - An Asian Journal. (issn: 1861-4728 ) (eissn: 1861-471X )
DOI: 10.1002/asia.201500325
Publisher:
Wiley-VCH Verlag
Publisher version: http://dx.doi.org/10.1002/asia.201500325
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
Thanks:
Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valenciana (Project PROMETEOII/2014/047) is gratefully acknowledged.
Type: Artículo

References

Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T., & Hamblin, M. R. (2011). Photodynamic therapy for infections: Clinical applications. Lasers in Surgery and Medicine, 43(7), 755-767. doi:10.1002/lsm.21080

Gambichler, T., Breuckmann, F., Boms, S., Altmeyer, P., & Kreuter, A. (2005). Narrowband UVB phototherapy in skin conditions beyond psoriasis. Journal of the American Academy of Dermatology, 52(4), 660-670. doi:10.1016/j.jaad.2004.08.047

Roelandts, R. (2002). The history of phototherapy: Something new under the sun? Journal of the American Academy of Dermatology, 46(6), 926-930. doi:10.1067/mjd.2002.121354 [+]
Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T., & Hamblin, M. R. (2011). Photodynamic therapy for infections: Clinical applications. Lasers in Surgery and Medicine, 43(7), 755-767. doi:10.1002/lsm.21080

Gambichler, T., Breuckmann, F., Boms, S., Altmeyer, P., & Kreuter, A. (2005). Narrowband UVB phototherapy in skin conditions beyond psoriasis. Journal of the American Academy of Dermatology, 52(4), 660-670. doi:10.1016/j.jaad.2004.08.047

Roelandts, R. (2002). The history of phototherapy: Something new under the sun? Journal of the American Academy of Dermatology, 46(6), 926-930. doi:10.1067/mjd.2002.121354

Rogers, G. S. (2012). Continuous Low-Irradiance Photodynamic Therapy: A New Therapeutic Paradigm. Journal of the National Comprehensive Cancer Network, 10(Suppl_2), S-14-S-17. doi:10.6004/jnccn.2012.0166

Ormond, A., & Freeman, H. (2013). Dye Sensitizers for Photodynamic Therapy. Materials, 6(3), 817-840. doi:10.3390/ma6030817

Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. doi:10.1038/nrc1071

Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., … Peng, Q. (1998). Photodynamic Therapy. JNCI Journal of the National Cancer Institute, 90(12), 889-905. doi:10.1093/jnci/90.12.889

Dougherty, T. J. (2002). An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery, 20(1), 3-7. doi:10.1089/104454702753474931

MacCormack, M. A. (2008). Photodynamic Therapy in Dermatology: An Update on Applications and Outcomes. Seminars in Cutaneous Medicine and Surgery, 27(1), 52-62. doi:10.1016/j.sder.2007.12.001

Babilas, P., Schreml, S., Landthaler, M., & Szeimies, R.-M. (2010). Photodynamic therapy in dermatology: state-of-the-art. Photodermatology, Photoimmunology & Photomedicine, 26(3), 118-132. doi:10.1111/j.1600-0781.2010.00507.x

Garrier, J., Bezdetnaya, L., Barlier, C., Gräfe, S., Guillemin, F., & D’Hallewin, M.-A. (2011). Foslip®-based photodynamic therapy as a means to improve wound healing. Photodiagnosis and Photodynamic Therapy, 8(4), 321-327. doi:10.1016/j.pdpdt.2011.06.003

Kossodo, S., & LaMuraglia, G. M. (2001). Clinical Potential of Photodynamic Therapy in Cardiovascular Disorders. American Journal of Cardiovascular Drugs, 1(1), 15-21. doi:10.2165/00129784-200101010-00002

Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. Journal of Medicinal Chemistry, 47(16), 3897-3915. doi:10.1021/jm040074b

Shishkova, N., Kuznetsova, O., & Berezov, T. (2013). Photodynamic Therapy in Gastroenterology. Journal of Gastrointestinal Cancer, 44(3), 251-259. doi:10.1007/s12029-013-9496-4

Huang, Z. (2005). A Review of Progress in Clinical Photodynamic Therapy. Technology in Cancer Research & Treatment, 4(3), 283-293. doi:10.1177/153303460500400308

Huang, Y.-Y., Tanaka, M., Vecchio, D., Garcia-Diaz, M., Chang, J., Morimoto, Y., & Hamblin, M. R. (2012). Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Review of Clinical Immunology, 8(5), 479-494. doi:10.1586/eci.12.37

Ochsner, M. (1997). Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology, 39(1), 1-18. doi:10.1016/s1011-1344(96)07428-3

Triesscheijn, M., Baas, P., Schellens, J. H. M., & Stewart, F. A. (2006). Photodynamic Therapy in Oncology. The Oncologist, 11(9), 1034-1044. doi:10.1634/theoncologist.11-9-1034

Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2008). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in Medical Science, 24(2), 259-268. doi:10.1007/s10103-008-0539-1

Foote, C. S. (1991). DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION. Photochemistry and Photobiology, 54(5), 659-659. doi:10.1111/j.1751-1097.1991.tb02071.x

Henderson, B. W., & Dougherty, T. J. (1992). HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 55(1), 145-157. doi:10.1111/j.1751-1097.1992.tb04222.x

Kuimova, M. K., Yahioglu, G., & Ogilby, P. R. (2009). Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants. Journal of the American Chemical Society, 131(1), 332-340. doi:10.1021/ja807484b

MACDONALD, I. J., & DOUGHERTY, T. J. (2001). Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 05(02), 105-129. doi:10.1002/jpp.328

Maiya, B. G. (2000). Photodynamic Therapy (PDT). Resonance, 5(4), 6-18. doi:10.1007/bf02837901

Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019

Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002

Allison, R. R., Downie, G. H., Cuenca, R., Hu, X.-H., Childs, C. J., & Sibata, C. H. (2004). Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 1(1), 27-42. doi:10.1016/s1572-1000(04)00007-9

Majumdar, P., Nomula, R., & Zhao, J. (2014). Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J. Mater. Chem. C, 2(30), 5982-5997. doi:10.1039/c4tc00659c

Killoran, J., Allen, L., Gallagher, J. F., Gallagher, W. M., & O′Shea, D. F. (2002). Synthesis of BF2chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chem. Commun., (17), 1862-1863. doi:10.1039/b204317c

Byrne, A. T., O’Connor, A. E., Hall, M., Murtagh, J., O’Neill, K., Curran, K. M., … Gallagher, W. M. (2009). Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment. British Journal of Cancer, 101(9), 1565-1573. doi:10.1038/sj.bjc.6605247

Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 42(1), 77-88. doi:10.1039/c2cs35216h

Awuah, S. G., & You, Y. (2012). Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances, 2(30), 11169. doi:10.1039/c2ra21404k

Lim, S. H., Thivierge, C., Nowak-Sliwinska, P., Han, J., van den Bergh, H., Wagnières, G., … Lee, H. B. (2010). In Vitro and In Vivo Photocytotoxicity of Boron Dipyrromethene Derivatives for Photodynamic Therapy. Journal of Medicinal Chemistry, 53(7), 2865-2874. doi:10.1021/jm901823u

Gibbs, J. H., Zhou, Z., Kessel, D., Fronczek, F. R., Pakhomova, S., & Vicente, M. G. H. (2015). Synthesis, spectroscopic, and in vitro investigations of 2,6-diiodo-BODIPYs with PDT and bioimaging applications. Journal of Photochemistry and Photobiology B: Biology, 145, 35-47. doi:10.1016/j.jphotobiol.2015.02.006

Banfi, S., Caruso, E., Zaza, S., Mancini, M., Gariboldi, M. B., & Monti, E. (2012). Synthesis and photodynamic activity of a panel of BODIPY dyes. Journal of Photochemistry and Photobiology B: Biology, 114, 52-60. doi:10.1016/j.jphotobiol.2012.05.010

Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070

Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070

Li, L., Nguyen, B., & Burgess, K. (2008). Functionalization of the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core. Bioorganic & Medicinal Chemistry Letters, 18(10), 3112-3116. doi:10.1016/j.bmcl.2007.10.103

Loudet, A., Ueno, Y., Wu, L., Jose, J., Barhoumi, R., Burghardt, R., & Burgess, K. (2011). Organelle-selective energy transfer: A fluorescent indicator of intracellular environment. Bioorganic & Medicinal Chemistry Letters, 21(6), 1849-1851. doi:10.1016/j.bmcl.2011.01.040

Kálai, T., & Hideg, K. (2006). Synthesis of new, BODIPY-based sensors and labels. Tetrahedron, 62(44), 10352-10360. doi:10.1016/j.tet.2006.08.079

Guo, B., Peng, X., Cui, A., Wu, Y., Tian, M., Zhang, L., … Gao, Y. (2007). Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 73(2), 206-210. doi:10.1016/j.dyepig.2005.11.007

Ziessel, R., Ulrich, G., & Harriman, A. (2007). The chemistry of Bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 31(4), 496. doi:10.1039/b617972j

Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n

Baruah, M., Qin, W., Vallée, R. A. L., Beljonne, D., Rohand, T., Dehaen, W., & Boens, N. (2005). A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Organic Letters, 7(20), 4377-4380. doi:10.1021/ol051603o

Jiao, L., Li, J., Zhang, S., Wei, C., Hao, E., & Vicente, M. G. H. (2009). A selective fluorescent sensor for imaging Cu2+ in living cells. New Journal of Chemistry, 33(9), 1888. doi:10.1039/b906441a

Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k

Barba-Bon, A., Calabuig, L., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+versus Fe3+ in aqueous media. RSC Adv., 4(18), 8962-8965. doi:10.1039/c3ra46845c

Barba-Bon, A., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye. Org. Biomol. Chem., 12(43), 8745-8751. doi:10.1039/c4ob01299b

El-Khouly, M. E., Fukuzumi, S., & D’Souza, F. (2013). Photosynthetic Antenna-Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem, 15(1), 30-47. doi:10.1002/cphc.201300715

Liu, J.-Y., Huang, Y., Menting, R., Röder, B., Ermilov, E. A., & Ng, D. K. P. (2013). A boron dipyrromethene–phthalocyanine pentad as an artificial photosynthetic model. Chemical Communications, 49(29), 2998. doi:10.1039/c3cc00262d

Erten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S., & Akkaya, E. U. (2008). A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells. Organic Letters, 10(15), 3299-3302. doi:10.1021/ol8010612

Lefebvre, J.-F., Sun, X.-Z., Calladine, J. A., George, M. W., & Gibson, E. A. (2014). Promoting charge-separation in p-type dye-sensitized solar cells using bodipy. Chem. Commun., 50(40), 5258-5260. doi:10.1039/c3cc46133e

Wang, J.-B., Fang, X.-Q., Pan, X., Dai, S.-Y., & Song, Q.-H. (2012). New 2, 6-Modified Bodipy Sensitizers for Dye-Sensitized Solar Cells. Chemistry - An Asian Journal, 7(4), 696-700. doi:10.1002/asia.201100779

Kolemen, S., Cakmak, Y., Erten-Ela, S., Altay, Y., Brendel, J., Thelakkat, M., & Akkaya, E. U. (2010). Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers. Organic Letters, 12(17), 3812-3815. doi:10.1021/ol1014762

Wang, F., Zhu, Y., Zhou, L., Pan, L., Cui, Z., Fei, Q., … Fan, C. (2015). Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific γ-Glutamyltranspeptidase. Angewandte Chemie International Edition, 54(25), 7349-7353. doi:10.1002/anie.201502899

Didier, P., Ulrich, G., Mély, Y., & Ziessel, R. (2009). Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Organic & Biomolecular Chemistry, 7(18), 3639. doi:10.1039/b911587k

Kowada, T., Maeda, H., & Kikuchi, K. (2015). BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews, 44(14), 4953-4972. doi:10.1039/c5cs00030k

Foster, T., Gibson, S., & Raubertas, R. (1996). Response of Photofrin®-sensitised mesothelioma xenografts to photodynamic therapy with 514 nm light. British Journal of Cancer, 73(8), 933-936. doi:10.1038/bjc.1996.184

Grosjean, P., Wagnieres, G., Fontolliet, C., van den Bergh, H., & Monnier, P. (1998). Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with Photofrin II. British Journal of Cancer, 77(11), 1989-1995. doi:10.1038/bjc.1998.330

Bays, R., Wagnières, G., Robert, D., Braichotte, D., Savary, J.-F., Monnier, P., & van den Bergh, H. (1996). Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry. Applied Optics, 35(10), 1756. doi:10.1364/ao.35.001756

Grosjean, P., Savary, J.-F., Wagnières, G., Mizeret, J., Woodtli, A., Theumann, J.-F., … Monnier, P. (1996). Tetra(m-hydroxyphenyl)chlorin clinical photodynamic therapy of early bronchial and oesophageal cancers. Lasers in Medical Science, 11(4), 227-235. doi:10.1007/bf02134913

Hartl, B. A., Hirschberg, H., Marcu, L., & Cherry, S. R. (2015). Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 6(3), 770. doi:10.1364/boe.6.000770

Mc Gee, M. M., Hyland, E., Campiani, G., Ramunno, A., Nacci, V., & Zisterer, D. M. (2002). Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Letters, 515(1-3), 66-70. doi:10.1016/s0014-5793(02)02440-7

Davies, K. J. A. (2000). Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 50(4), 279-289. doi:10.1080/15216540051081010

Plaetzer, K., Kiesslich, T., Oberdanner, C., & Krammer, B. (2005). Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection. Current Pharmaceutical Design, 11(9), 1151-1165. doi:10.2174/1381612053507648

Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913-922. doi:10.1007/s10495-007-0756-2

Caruso, E., Banfi, S., Barbieri, P., Leva, B., & Orlandi, V. T. (2012). Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 114, 44-51. doi:10.1016/j.jphotobiol.2012.05.007

Lai, Y.-C., Su, S.-Y., & Chang, C.-C. (2013). Special Reactive Oxygen Species Generation by a Highly Photostable BODIPY-Based Photosensitizer for Selective Photodynamic Therapy. ACS Applied Materials & Interfaces, 5(24), 12935-12943. doi:10.1021/am403593m

Silva, E. F. F., Serpa, C., Dąbrowski, J. M., Monteiro, C. J. P., Formosinho, S. J., Stochel, G., … Arnaut, L. G. (2010). Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Photodynamic Therapy. Chemistry - A European Journal, 16(30), 9273-9286. doi:10.1002/chem.201000111

Gallagher, W. M., Allen, L. T., O’Shea, C., Kenna, T., Hall, M., Gorman, A., … O’Shea, D. F. (2005). A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia. British Journal of Cancer, 92(9), 1702-1710. doi:10.1038/sj.bjc.6602527

Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. doi:10.1038/sj.bjc.6600664

Mroz, P., Yaroslavsky, A., Kharkwal, G. B., & Hamblin, M. R. (2011). Cell Death Pathways in Photodynamic Therapy of Cancer. Cancers, 3(2), 2516-2539. doi:10.3390/cancers3022516

Lee, J., Giordano, S., & Zhang, J. (2011). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal, 441(2), 523-540. doi:10.1042/bj20111451

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record