- -

Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications

Show simple item record

Files in this item

dc.contributor.author Gorbe, Mónica es_ES
dc.contributor.author Barba Bon, Andrea es_ES
dc.contributor.author De la Torre, Cristina es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Murguía, Jose R. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2016-03-08T12:48:40Z
dc.date.issued 2015-10
dc.identifier.issn 1861-4728
dc.identifier.uri http://hdl.handle.net/10251/61559
dc.description.abstract A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (e=77600 cm-1M-1) and an emission at 514 nm. In vitro toxicity of 1 in the presence of light and in darkness has been studied with HeLa, HaCaT, MCF-7, and SCC-13 cell lines. Moreover, internalization studies of 1 in these cell lines were also performed. These results suggested that 1 is more toxic for SCC-13 and HeLa carcinoma cells than for the HaCaT noncancerous immortal human keratinocytes. Toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). Cellular co-localization experiments revealed preferential localization of the dye in the endoplasmic reticulum. es_ES
dc.description.sponsorship Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valenciana (Project PROMETEOII/2014/047) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - An Asian Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bodipy es_ES
dc.subject fluorescence es_ES
dc.subject photochemistry es_ES
dc.subject photodynamic therapy es_ES
dc.subject sensors es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/asia.201500325
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Gorbe, M.; Barba Bon, A.; De La Torre, C.; Gil Grau, S.; Costero Nieto, AM.; Sancenón Galarza, F.; Murguía, JR.... (2015). Synthesis and In Vitro Evaluation of a Photosensitizer-BODIPY Derivative for Potential Photodynamic Therapy Applications. Chemistry - An Asian Journal. 10(10):2121-2125. https://doi.org/10.1002/asia.201500325 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/asia.201500325 es_ES
dc.description.upvformatpinicio 2121 es_ES
dc.description.upvformatpfin 2125 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 294202 es_ES
dc.identifier.eissn 1861-471X
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kharkwal, G. B., Sharma, S. K., Huang, Y.-Y., Dai, T., & Hamblin, M. R. (2011). Photodynamic therapy for infections: Clinical applications. Lasers in Surgery and Medicine, 43(7), 755-767. doi:10.1002/lsm.21080 es_ES
dc.description.references Gambichler, T., Breuckmann, F., Boms, S., Altmeyer, P., & Kreuter, A. (2005). Narrowband UVB phototherapy in skin conditions beyond psoriasis. Journal of the American Academy of Dermatology, 52(4), 660-670. doi:10.1016/j.jaad.2004.08.047 es_ES
dc.description.references Roelandts, R. (2002). The history of phototherapy: Something new under the sun? Journal of the American Academy of Dermatology, 46(6), 926-930. doi:10.1067/mjd.2002.121354 es_ES
dc.description.references Rogers, G. S. (2012). Continuous Low-Irradiance Photodynamic Therapy: A New Therapeutic Paradigm. Journal of the National Comprehensive Cancer Network, 10(Suppl_2), S-14-S-17. doi:10.6004/jnccn.2012.0166 es_ES
dc.description.references Ormond, A., & Freeman, H. (2013). Dye Sensitizers for Photodynamic Therapy. Materials, 6(3), 817-840. doi:10.3390/ma6030817 es_ES
dc.description.references Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. doi:10.1038/nrc1071 es_ES
dc.description.references Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., … Peng, Q. (1998). Photodynamic Therapy. JNCI Journal of the National Cancer Institute, 90(12), 889-905. doi:10.1093/jnci/90.12.889 es_ES
dc.description.references Dougherty, T. J. (2002). An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery, 20(1), 3-7. doi:10.1089/104454702753474931 es_ES
dc.description.references MacCormack, M. A. (2008). Photodynamic Therapy in Dermatology: An Update on Applications and Outcomes. Seminars in Cutaneous Medicine and Surgery, 27(1), 52-62. doi:10.1016/j.sder.2007.12.001 es_ES
dc.description.references Babilas, P., Schreml, S., Landthaler, M., & Szeimies, R.-M. (2010). Photodynamic therapy in dermatology: state-of-the-art. Photodermatology, Photoimmunology & Photomedicine, 26(3), 118-132. doi:10.1111/j.1600-0781.2010.00507.x es_ES
dc.description.references Garrier, J., Bezdetnaya, L., Barlier, C., Gräfe, S., Guillemin, F., & D’Hallewin, M.-A. (2011). Foslip®-based photodynamic therapy as a means to improve wound healing. Photodiagnosis and Photodynamic Therapy, 8(4), 321-327. doi:10.1016/j.pdpdt.2011.06.003 es_ES
dc.description.references Kossodo, S., & LaMuraglia, G. M. (2001). Clinical Potential of Photodynamic Therapy in Cardiovascular Disorders. American Journal of Cardiovascular Drugs, 1(1), 15-21. doi:10.2165/00129784-200101010-00002 es_ES
dc.description.references Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current Clinical and Preclinical Photosensitizers for Use in Photodynamic Therapy. Journal of Medicinal Chemistry, 47(16), 3897-3915. doi:10.1021/jm040074b es_ES
dc.description.references Shishkova, N., Kuznetsova, O., & Berezov, T. (2013). Photodynamic Therapy in Gastroenterology. Journal of Gastrointestinal Cancer, 44(3), 251-259. doi:10.1007/s12029-013-9496-4 es_ES
dc.description.references Huang, Z. (2005). A Review of Progress in Clinical Photodynamic Therapy. Technology in Cancer Research & Treatment, 4(3), 283-293. doi:10.1177/153303460500400308 es_ES
dc.description.references Huang, Y.-Y., Tanaka, M., Vecchio, D., Garcia-Diaz, M., Chang, J., Morimoto, Y., & Hamblin, M. R. (2012). Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Review of Clinical Immunology, 8(5), 479-494. doi:10.1586/eci.12.37 es_ES
dc.description.references Ochsner, M. (1997). Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology, 39(1), 1-18. doi:10.1016/s1011-1344(96)07428-3 es_ES
dc.description.references Triesscheijn, M., Baas, P., Schellens, J. H. M., & Stewart, F. A. (2006). Photodynamic Therapy in Oncology. The Oncologist, 11(9), 1034-1044. doi:10.1634/theoncologist.11-9-1034 es_ES
dc.description.references Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2008). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in Medical Science, 24(2), 259-268. doi:10.1007/s10103-008-0539-1 es_ES
dc.description.references Foote, C. S. (1991). DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION. Photochemistry and Photobiology, 54(5), 659-659. doi:10.1111/j.1751-1097.1991.tb02071.x es_ES
dc.description.references Henderson, B. W., & Dougherty, T. J. (1992). HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 55(1), 145-157. doi:10.1111/j.1751-1097.1992.tb04222.x es_ES
dc.description.references Kuimova, M. K., Yahioglu, G., & Ogilby, P. R. (2009). Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants. Journal of the American Chemical Society, 131(1), 332-340. doi:10.1021/ja807484b es_ES
dc.description.references MACDONALD, I. J., & DOUGHERTY, T. J. (2001). Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 05(02), 105-129. doi:10.1002/jpp.328 es_ES
dc.description.references Maiya, B. G. (2000). Photodynamic Therapy (PDT). Resonance, 5(4), 6-18. doi:10.1007/bf02837901 es_ES
dc.description.references Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019 es_ES
dc.description.references Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002 es_ES
dc.description.references Allison, R. R., Downie, G. H., Cuenca, R., Hu, X.-H., Childs, C. J., & Sibata, C. H. (2004). Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy, 1(1), 27-42. doi:10.1016/s1572-1000(04)00007-9 es_ES
dc.description.references Majumdar, P., Nomula, R., & Zhao, J. (2014). Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J. Mater. Chem. C, 2(30), 5982-5997. doi:10.1039/c4tc00659c es_ES
dc.description.references Killoran, J., Allen, L., Gallagher, J. F., Gallagher, W. M., & O′Shea, D. F. (2002). Synthesis of BF2chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chem. Commun., (17), 1862-1863. doi:10.1039/b204317c es_ES
dc.description.references Byrne, A. T., O’Connor, A. E., Hall, M., Murtagh, J., O’Neill, K., Curran, K. M., … Gallagher, W. M. (2009). Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment. British Journal of Cancer, 101(9), 1565-1573. doi:10.1038/sj.bjc.6605247 es_ES
dc.description.references Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 42(1), 77-88. doi:10.1039/c2cs35216h es_ES
dc.description.references Awuah, S. G., & You, Y. (2012). Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances, 2(30), 11169. doi:10.1039/c2ra21404k es_ES
dc.description.references Lim, S. H., Thivierge, C., Nowak-Sliwinska, P., Han, J., van den Bergh, H., Wagnières, G., … Lee, H. B. (2010). In Vitro and In Vivo Photocytotoxicity of Boron Dipyrromethene Derivatives for Photodynamic Therapy. Journal of Medicinal Chemistry, 53(7), 2865-2874. doi:10.1021/jm901823u es_ES
dc.description.references Gibbs, J. H., Zhou, Z., Kessel, D., Fronczek, F. R., Pakhomova, S., & Vicente, M. G. H. (2015). Synthesis, spectroscopic, and in vitro investigations of 2,6-diiodo-BODIPYs with PDT and bioimaging applications. Journal of Photochemistry and Photobiology B: Biology, 145, 35-47. doi:10.1016/j.jphotobiol.2015.02.006 es_ES
dc.description.references Banfi, S., Caruso, E., Zaza, S., Mancini, M., Gariboldi, M. B., & Monti, E. (2012). Synthesis and photodynamic activity of a panel of BODIPY dyes. Journal of Photochemistry and Photobiology B: Biology, 114, 52-60. doi:10.1016/j.jphotobiol.2012.05.010 es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070 es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. Angewandte Chemie, 120(7), 1202-1219. doi:10.1002/ange.200702070 es_ES
dc.description.references Li, L., Nguyen, B., & Burgess, K. (2008). Functionalization of the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core. Bioorganic & Medicinal Chemistry Letters, 18(10), 3112-3116. doi:10.1016/j.bmcl.2007.10.103 es_ES
dc.description.references Loudet, A., Ueno, Y., Wu, L., Jose, J., Barhoumi, R., Burghardt, R., & Burgess, K. (2011). Organelle-selective energy transfer: A fluorescent indicator of intracellular environment. Bioorganic & Medicinal Chemistry Letters, 21(6), 1849-1851. doi:10.1016/j.bmcl.2011.01.040 es_ES
dc.description.references Kálai, T., & Hideg, K. (2006). Synthesis of new, BODIPY-based sensors and labels. Tetrahedron, 62(44), 10352-10360. doi:10.1016/j.tet.2006.08.079 es_ES
dc.description.references Guo, B., Peng, X., Cui, A., Wu, Y., Tian, M., Zhang, L., … Gao, Y. (2007). Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments, 73(2), 206-210. doi:10.1016/j.dyepig.2005.11.007 es_ES
dc.description.references Ziessel, R., Ulrich, G., & Harriman, A. (2007). The chemistry of Bodipy: A new El Dorado for fluorescence tools. New Journal of Chemistry, 31(4), 496. doi:10.1039/b617972j es_ES
dc.description.references Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives:  Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n es_ES
dc.description.references Baruah, M., Qin, W., Vallée, R. A. L., Beljonne, D., Rohand, T., Dehaen, W., & Boens, N. (2005). A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Organic Letters, 7(20), 4377-4380. doi:10.1021/ol051603o es_ES
dc.description.references Jiao, L., Li, J., Zhang, S., Wei, C., Hao, E., & Vicente, M. G. H. (2009). A selective fluorescent sensor for imaging Cu2+ in living cells. New Journal of Chemistry, 33(9), 1888. doi:10.1039/b906441a es_ES
dc.description.references Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k es_ES
dc.description.references Barba-Bon, A., Calabuig, L., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Off–on BODIPY-based chemosensors for selective detection of Al3+ and Cr3+versus Fe3+ in aqueous media. RSC Adv., 4(18), 8962-8965. doi:10.1039/c3ra46845c es_ES
dc.description.references Barba-Bon, A., Costero, A. M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2014). Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye. Org. Biomol. Chem., 12(43), 8745-8751. doi:10.1039/c4ob01299b es_ES
dc.description.references El-Khouly, M. E., Fukuzumi, S., & D’Souza, F. (2013). Photosynthetic Antenna-Reaction Center Mimicry by Using Boron Dipyrromethene Sensitizers. ChemPhysChem, 15(1), 30-47. doi:10.1002/cphc.201300715 es_ES
dc.description.references Liu, J.-Y., Huang, Y., Menting, R., Röder, B., Ermilov, E. A., & Ng, D. K. P. (2013). A boron dipyrromethene–phthalocyanine pentad as an artificial photosynthetic model. Chemical Communications, 49(29), 2998. doi:10.1039/c3cc00262d es_ES
dc.description.references Erten-Ela, S., Yilmaz, M. D., Icli, B., Dede, Y., Icli, S., & Akkaya, E. U. (2008). A Panchromatic Boradiazaindacene (BODIPY) Sensitizer for Dye-Sensitized Solar Cells. Organic Letters, 10(15), 3299-3302. doi:10.1021/ol8010612 es_ES
dc.description.references Lefebvre, J.-F., Sun, X.-Z., Calladine, J. A., George, M. W., & Gibson, E. A. (2014). Promoting charge-separation in p-type dye-sensitized solar cells using bodipy. Chem. Commun., 50(40), 5258-5260. doi:10.1039/c3cc46133e es_ES
dc.description.references Wang, J.-B., Fang, X.-Q., Pan, X., Dai, S.-Y., & Song, Q.-H. (2012). New 2, 6-Modified Bodipy Sensitizers for Dye-Sensitized Solar Cells. Chemistry - An Asian Journal, 7(4), 696-700. doi:10.1002/asia.201100779 es_ES
dc.description.references Kolemen, S., Cakmak, Y., Erten-Ela, S., Altay, Y., Brendel, J., Thelakkat, M., & Akkaya, E. U. (2010). Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers. Organic Letters, 12(17), 3812-3815. doi:10.1021/ol1014762 es_ES
dc.description.references Wang, F., Zhu, Y., Zhou, L., Pan, L., Cui, Z., Fei, Q., … Fan, C. (2015). Fluorescent In Situ Targeting Probes for Rapid Imaging of Ovarian-Cancer-Specific γ-Glutamyltranspeptidase. Angewandte Chemie International Edition, 54(25), 7349-7353. doi:10.1002/anie.201502899 es_ES
dc.description.references Didier, P., Ulrich, G., Mély, Y., & Ziessel, R. (2009). Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Organic & Biomolecular Chemistry, 7(18), 3639. doi:10.1039/b911587k es_ES
dc.description.references Kowada, T., Maeda, H., & Kikuchi, K. (2015). BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews, 44(14), 4953-4972. doi:10.1039/c5cs00030k es_ES
dc.description.references Foster, T., Gibson, S., & Raubertas, R. (1996). Response of Photofrin®-sensitised mesothelioma xenografts to photodynamic therapy with 514 nm light. British Journal of Cancer, 73(8), 933-936. doi:10.1038/bjc.1996.184 es_ES
dc.description.references Grosjean, P., Wagnieres, G., Fontolliet, C., van den Bergh, H., & Monnier, P. (1998). Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with Photofrin II. British Journal of Cancer, 77(11), 1989-1995. doi:10.1038/bjc.1998.330 es_ES
dc.description.references Bays, R., Wagnières, G., Robert, D., Braichotte, D., Savary, J.-F., Monnier, P., & van den Bergh, H. (1996). Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry. Applied Optics, 35(10), 1756. doi:10.1364/ao.35.001756 es_ES
dc.description.references Grosjean, P., Savary, J.-F., Wagnières, G., Mizeret, J., Woodtli, A., Theumann, J.-F., … Monnier, P. (1996). Tetra(m-hydroxyphenyl)chlorin clinical photodynamic therapy of early bronchial and oesophageal cancers. Lasers in Medical Science, 11(4), 227-235. doi:10.1007/bf02134913 es_ES
dc.description.references Hartl, B. A., Hirschberg, H., Marcu, L., & Cherry, S. R. (2015). Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 6(3), 770. doi:10.1364/boe.6.000770 es_ES
dc.description.references Mc Gee, M. M., Hyland, E., Campiani, G., Ramunno, A., Nacci, V., & Zisterer, D. M. (2002). Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6. FEBS Letters, 515(1-3), 66-70. doi:10.1016/s0014-5793(02)02440-7 es_ES
dc.description.references Davies, K. J. A. (2000). Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 50(4), 279-289. doi:10.1080/15216540051081010 es_ES
dc.description.references Plaetzer, K., Kiesslich, T., Oberdanner, C., & Krammer, B. (2005). Apoptosis Following Photodynamic Tumor Therapy: Induction, Mechanisms and Detection. Current Pharmaceutical Design, 11(9), 1151-1165. doi:10.2174/1381612053507648 es_ES
dc.description.references Ott, M., Gogvadze, V., Orrenius, S., & Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis, 12(5), 913-922. doi:10.1007/s10495-007-0756-2 es_ES
dc.description.references Caruso, E., Banfi, S., Barbieri, P., Leva, B., & Orlandi, V. T. (2012). Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 114, 44-51. doi:10.1016/j.jphotobiol.2012.05.007 es_ES
dc.description.references Lai, Y.-C., Su, S.-Y., & Chang, C.-C. (2013). Special Reactive Oxygen Species Generation by a Highly Photostable BODIPY-Based Photosensitizer for Selective Photodynamic Therapy. ACS Applied Materials & Interfaces, 5(24), 12935-12943. doi:10.1021/am403593m es_ES
dc.description.references Silva, E. F. F., Serpa, C., Dąbrowski, J. M., Monteiro, C. J. P., Formosinho, S. J., Stochel, G., … Arnaut, L. G. (2010). Mechanisms of Singlet-Oxygen and Superoxide-Ion Generation by Porphyrins and Bacteriochlorins and their Implications in Photodynamic Therapy. Chemistry - A European Journal, 16(30), 9273-9286. doi:10.1002/chem.201000111 es_ES
dc.description.references Gallagher, W. M., Allen, L. T., O’Shea, C., Kenna, T., Hall, M., Gorman, A., … O’Shea, D. F. (2005). A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia. British Journal of Cancer, 92(9), 1702-1710. doi:10.1038/sj.bjc.6602527 es_ES
dc.description.references Teiten, M.-H., Bezdetnaya, L., Morlière, P., Santus, R., & Guillemin, F. (2003). Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. British Journal of Cancer, 88(1), 146-152. doi:10.1038/sj.bjc.6600664 es_ES
dc.description.references Mroz, P., Yaroslavsky, A., Kharkwal, G. B., & Hamblin, M. R. (2011). Cell Death Pathways in Photodynamic Therapy of Cancer. Cancers, 3(2), 2516-2539. doi:10.3390/cancers3022516 es_ES
dc.description.references Lee, J., Giordano, S., & Zhang, J. (2011). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal, 441(2), 523-540. doi:10.1042/bj20111451 es_ES


This item appears in the following Collection(s)

Show simple item record