- -

Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez, Juan J es_ES
dc.contributor.author Perez-Cajaraville, Juan J. es_ES
dc.contributor.author Muñoz, Victor es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2016-03-16T12:37:17Z
dc.date.issued 2014-07
dc.identifier.issn 0094-2405
dc.identifier.uri http://hdl.handle.net/10251/61929
dc.description.abstract Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a "strip lesion" to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 degrees C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m(-1)) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension. (C) 2014 American Association of Physicists in Medicine. es_ES
dc.description.sponsorship This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" (Grant No. TEC2011-27133-C02-01) and was awarded the XX Edition of the Rafael Hervada Prize for Biomedical Research 2012/2013 granted by the San Rafael Hospital (A Coruna, Spain). The authors wish to thank Dr. Antoni Ivorra for the useful comments about electroporation effects. en_EN
dc.language Inglés es_ES
dc.publisher American Association of Physicists in Medicine: Medical Physics es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject bipolar pulsed radiofrequency es_ES
dc.subject computer modeling es_ES
dc.subject electroporation es_ES
dc.subject finite-element method es_ES
dc.subject pain es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1118/1.4883776
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Pérez, JJ.; Perez-Cajaraville, JJ.; Muñoz, V.; Berjano, E. (2014). Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief. Medical Physics. 41(7). https://doi.org/10.1118/1.4883776 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1118/1.4883776 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 268593 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Schianchi, P. M., Sluijter, M. E., & Balogh, S. E. (2013). The Treatment of Joint Pain with Intra-articular Pulsed Radiofrequency. Anesthesiology and Pain Medicine, 3(2), 250-5. doi:10.5812/aapm.10259 es_ES
dc.description.references Malik, K., & Benzon, H. T. (2008). Radiofrequency Applications to Dorsal Root Ganglia. Anesthesiology, 109(3), 527-542. doi:10.1097/aln.0b013e318182c86e es_ES
dc.description.references E. Sluijter, M., & Imani, F. (2013). Evolution and Mode of Action of Pulsed Radiofrequency. Anesthesiology and Pain Medicine, 2(4), 139-41. doi:10.5812/aapm.10213 es_ES
dc.description.references Cosman Jr., E. R., & Gonzalez, C. D. (2011). Bipolar Radiofrequency Lesion Geometry: Implications for Palisade Treatment of Sacroiliac Joint Pain. Pain Practice, 11(1), 3-22. doi:10.1111/j.1533-2500.2010.00400.x es_ES
dc.description.references Chua, N. H. L., Vissers, K. C., & Sluijter, M. E. (2010). Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications—a review. Acta Neurochirurgica, 153(4), 763-771. doi:10.1007/s00701-010-0881-5 es_ES
dc.description.references Cosman, E. R., & Cosman, E. R. (2005). Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes. Pain Medicine, 6(6), 405-424. doi:10.1111/j.1526-4637.2005.00076.x es_ES
dc.description.references Erdine, S., Bilir, A., Cosman, E. R., & Cosman Jr., E. R. (2009). Ultrastructural Changes in Axons Following Exposure to Pulsed Radiofrequency Fields. Pain Practice, 9(6), 407-417. doi:10.1111/j.1533-2500.2009.00317.x es_ES
dc.description.references Aksu, R., Uğur, F., Bicer, C., Menkü, A., Güler, G., Madenoğlu, H., … Boyaci, A. (2010). The Efficiency of Pulsed Radiofrequency Application on L5 and L6 Dorsal Roots in Rabbits Developing Neuropathic Pain. Regional Anesthesia and Pain Medicine, 35(1), 11-15. doi:10.1097/aap.0b013e3181c76c21 es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Tungjitkusolmun, S., Staelin, S. T., Haemmerich, D., Jang-Zern Tsai, Hong Cao, Webster, J. G., … Vorperian, V. R. (2002). Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering, 49(1), 3-9. doi:10.1109/10.972834 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Arena, C. B., Sano, M. B., Rossmeisl, J. H., Caldwell, J. L., Garcia, P. A., Rylander, M., & Davalos, R. V. (2011). High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. BioMedical Engineering OnLine, 10(1), 102. doi:10.1186/1475-925x-10-102 es_ES
dc.description.references Reilly, J. P. (1998). Applied Bioelectricity. doi:10.1007/978-1-4612-1664-3 es_ES
dc.description.references Lacourse, J. R., Miller, W. T., Vogt, M., & Selikowitz, S. M. (1985). Effect of High-Frequency Current on Nerve and Muscle Tissue. IEEE Transactions on Biomedical Engineering, BME-32(1), 82-86. doi:10.1109/tbme.1985.325636 es_ES
dc.description.references Viglianti, B. L., Dewhirst, M. W., Abraham, J. P., Gorman, J. M., & Sparrow, E. M. (2014). Rationalization of thermal injury quantification methods: Application to skin burns. Burns, 40(5), 896-902. doi:10.1016/j.burns.2013.12.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem