Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez, Juan J | es_ES |
dc.contributor.author | Perez-Cajaraville, Juan J. | es_ES |
dc.contributor.author | Muñoz, Victor | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2016-03-16T12:37:17Z | |
dc.date.issued | 2014-07 | |
dc.identifier.issn | 0094-2405 | |
dc.identifier.uri | http://hdl.handle.net/10251/61929 | |
dc.description.abstract | Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a "strip lesion" to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 degrees C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m(-1)) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension. (C) 2014 American Association of Physicists in Medicine. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" (Grant No. TEC2011-27133-C02-01) and was awarded the XX Edition of the Rafael Hervada Prize for Biomedical Research 2012/2013 granted by the San Rafael Hospital (A Coruna, Spain). The authors wish to thank Dr. Antoni Ivorra for the useful comments about electroporation effects. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Association of Physicists in Medicine: Medical Physics | es_ES |
dc.relation.ispartof | Medical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | bipolar pulsed radiofrequency | es_ES |
dc.subject | computer modeling | es_ES |
dc.subject | electroporation | es_ES |
dc.subject | finite-element method | es_ES |
dc.subject | pain | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1118/1.4883776 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Pérez, JJ.; Perez-Cajaraville, JJ.; Muñoz, V.; Berjano, E. (2014). Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief. Medical Physics. 41(7). https://doi.org/10.1118/1.4883776 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1118/1.4883776 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 268593 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Schianchi, P. M., Sluijter, M. E., & Balogh, S. E. (2013). The Treatment of Joint Pain with Intra-articular Pulsed Radiofrequency. Anesthesiology and Pain Medicine, 3(2), 250-5. doi:10.5812/aapm.10259 | es_ES |
dc.description.references | Malik, K., & Benzon, H. T. (2008). Radiofrequency Applications to Dorsal Root Ganglia. Anesthesiology, 109(3), 527-542. doi:10.1097/aln.0b013e318182c86e | es_ES |
dc.description.references | E. Sluijter, M., & Imani, F. (2013). Evolution and Mode of Action of Pulsed Radiofrequency. Anesthesiology and Pain Medicine, 2(4), 139-41. doi:10.5812/aapm.10213 | es_ES |
dc.description.references | Cosman Jr., E. R., & Gonzalez, C. D. (2011). Bipolar Radiofrequency Lesion Geometry: Implications for Palisade Treatment of Sacroiliac Joint Pain. Pain Practice, 11(1), 3-22. doi:10.1111/j.1533-2500.2010.00400.x | es_ES |
dc.description.references | Chua, N. H. L., Vissers, K. C., & Sluijter, M. E. (2010). Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications—a review. Acta Neurochirurgica, 153(4), 763-771. doi:10.1007/s00701-010-0881-5 | es_ES |
dc.description.references | Cosman, E. R., & Cosman, E. R. (2005). Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes. Pain Medicine, 6(6), 405-424. doi:10.1111/j.1526-4637.2005.00076.x | es_ES |
dc.description.references | Erdine, S., Bilir, A., Cosman, E. R., & Cosman Jr., E. R. (2009). Ultrastructural Changes in Axons Following Exposure to Pulsed Radiofrequency Fields. Pain Practice, 9(6), 407-417. doi:10.1111/j.1533-2500.2009.00317.x | es_ES |
dc.description.references | Aksu, R., Uğur, F., Bicer, C., Menkü, A., Güler, G., Madenoğlu, H., … Boyaci, A. (2010). The Efficiency of Pulsed Radiofrequency Application on L5 and L6 Dorsal Roots in Rabbits Developing Neuropathic Pain. Regional Anesthesia and Pain Medicine, 35(1), 11-15. doi:10.1097/aap.0b013e3181c76c21 | es_ES |
dc.description.references | Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 | es_ES |
dc.description.references | Tungjitkusolmun, S., Staelin, S. T., Haemmerich, D., Jang-Zern Tsai, Hong Cao, Webster, J. G., … Vorperian, V. R. (2002). Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Transactions on Biomedical Engineering, 49(1), 3-9. doi:10.1109/10.972834 | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 | es_ES |
dc.description.references | Arena, C. B., Sano, M. B., Rossmeisl, J. H., Caldwell, J. L., Garcia, P. A., Rylander, M., & Davalos, R. V. (2011). High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. BioMedical Engineering OnLine, 10(1), 102. doi:10.1186/1475-925x-10-102 | es_ES |
dc.description.references | Reilly, J. P. (1998). Applied Bioelectricity. doi:10.1007/978-1-4612-1664-3 | es_ES |
dc.description.references | Lacourse, J. R., Miller, W. T., Vogt, M., & Selikowitz, S. M. (1985). Effect of High-Frequency Current on Nerve and Muscle Tissue. IEEE Transactions on Biomedical Engineering, BME-32(1), 82-86. doi:10.1109/tbme.1985.325636 | es_ES |
dc.description.references | Viglianti, B. L., Dewhirst, M. W., Abraham, J. P., Gorman, J. M., & Sparrow, E. M. (2014). Rationalization of thermal injury quantification methods: Application to skin burns. Burns, 40(5), 896-902. doi:10.1016/j.burns.2013.12.005 | es_ES |