- -

Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moratal Pérez, David es_ES
dc.contributor.author Dixon, W. Thomas es_ES
dc.contributor.author Ramamurthy, Senthil es_ES
dc.contributor.author Lerakis, Stamatios es_ES
dc.contributor.author Parks, W. James es_ES
dc.contributor.author Brummer, Marijn E. es_ES
dc.date.accessioned 2016-03-29T09:32:43Z
dc.date.issued 2013-01
dc.identifier.issn 0094-2405
dc.identifier.uri http://hdl.handle.net/10251/62051
dc.description.abstract Purpose: To analyze and optimize the signal-to-noise ratio (SNR) for the "Noquist" method for acceleration of cine magnetic resonance imaging in the presence of partially static field of view, designing practical methods for selection of optimal or near-optimal sample sets to allow reliable application of the method for variable image dimensions. Methods: To investigate the impact of the Noquist method and its experimental parameters on the SNR in the image reconstructed from reduced data, and to explore optimization of methods for highest SNR stability, three different optimization parameters have been selected: the condition of the forward matrix (R-cond) as it defines the propagation of noise into the reconstructed image, and the maximum (Phi(maxD)) and the mean (Phi(meanD)) linear noise amplification factor of the dynamic field-of-view (FOV) region. As SNR in a Noquist reconstruction is often not uniform across the FOV and since dynamic regions may contain the part of the image more clinically relevant, primarily these noise levels are targeted for optimization. Using these three optimization parameters, three experiments were conducted: characterization of Noquist SNR properties as a function of important image size parameters; for sufficiently small image dimensions, employment of exhaustive search using lexicographical algorithms to visit all possibilities under the cine imaging constraint that equal numbers of views are acquired at each time point of the sequence; and, departing from an hypothetically optimal pattern, generation and evaluation of SNR characteristics of a series of random variations to that optimal pattern. Results: The impact of favorable sparse data selection is illustrated, and SNR properties are characterized as a function of relevant acquisition parameters. Optimal data selection is investigated by exhaustive methods for small image sizes, and compared with algorithmic selection patterns. Observations from these experiments are confirmed by further studies on data selection for realistic image dimensions and an optimal selection algorithm is proposed. Sixty-four cases of small image sizes were analyzed through exhaustive search with a total of 527 984 141 matrix inversions called in the process, evaluating several SNR parameters for each case. An algorithm, named "Stairwell," that permits to design image dimensions with optimal SNR characteristics is presented, evaluated and compared with cases analyzed through exhaustive search. In 71.9% of the cases exhaustively studied, the Stairwell algorithm yielded optimal solutions. For no case did the deviation from optimum exceed 3.2% (R-cond), 1.0% (Phi(meanD)), and 4.9% (Phi(maxD)). Conclusions: We have demonstrated SNR-optimality of the "Stairwell" selection algorithm for small image dimensions, and performed additional experiments which all support hypothesized optimality of the algorithm for any image dimensions that satisfy certain symmetry constraints for Noquist reduced-data cine MR imaging. Furthermore, we have presented overall SNR characteristics associated with use of the Noquist method by this algorithm for practical clinical image dimensions. Additionally, observations from our optimization experiments allow us to formulate recommendations for dimensioning Noquist image acquisition parameters which guarantee stable inversion. Moreover, these results allow prediction of the anticipated SNR properties of the reconstruction for given image dimensions (S, D, T), relative to SNR in a conventional full-grid acquisition. es_ES
dc.description.sponsorship This work was supported in part by grant NIH R01 HL077627 from the National Institutes of Health and by a grant from the Emory University-General Electric Radiology Research Program. The authors thank Dr. Thierry Metens (Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium), Dr. Vincent Denolin (Philips Medical Systems, Brussels, Belgium), Dr. Klaas P. Pruessmann (ETH, Zurich, Switzerland) and Dr. Stuart Clarkson and Dr. Fred Frigo (both General Electric Healthcare) for their helpful comments and suggestions. en_EN
dc.language Inglés es_ES
dc.publisher American Association of Physicists in Medicine: Medical Physics es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MRI es_ES
dc.subject image reconstruction es_ES
dc.subject reduced field of view imaging es_ES
dc.subject optimal sampling es_ES
dc.subject SNR optimization es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1118/1.4770270
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01HL077627/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Moratal Pérez, D.; Dixon, WT.; Ramamurthy, S.; Lerakis, S.; Parks, WJ.; Brummer, ME. (2013). Optimal sampling for "Noquist" reduced-data cine magnetic resonance imaging. Medical Physics. 40(1):1230201-1230213. doi:10.1118/1.4770270 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1118/1.4770270 es_ES
dc.description.upvformatpinicio 1230201 es_ES
dc.description.upvformatpfin 1230213 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 253397 es_ES
dc.contributor.funder Emory University es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Sodickson, D. K., & Manning, W. J. (1997). Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine, 38(4), 591-603. doi:10.1002/mrm.1910380414 es_ES
dc.description.references Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42(5), 952-962. doi:10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s es_ES
dc.description.references Kyriakos, W. E., Panych, L. P., Kacher, D. F., Westin, C.-F., Bao, S. M., Mulkern, R. V., & Jolesz, F. A. (2000). Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magnetic Resonance in Medicine, 44(2), 301-308. doi:10.1002/1522-2594(200008)44:2<301::aid-mrm18>3.0.co;2-d es_ES
dc.description.references Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J., … Haase, A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47(6), 1202-1210. doi:10.1002/mrm.10171 es_ES
dc.description.references Feinberg, D. A., Hale, J. D., Watts, J. C., Kaufman, L., & Mark, A. (1986). Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology, 161(2), 527-531. doi:10.1148/radiology.161.2.3763926 es_ES
dc.description.references Brummer, M. E., Moratal-Pérez, D., Hong, C.-Y., Pettigrew, R. I., Millet-Roig, J., & Dixon, W. T. (2004). Noquist: Reduced field-of-view imaging by direct Fourier inversion. Magnetic Resonance in Medicine, 51(2), 331-342. doi:10.1002/mrm.10694 es_ES
dc.description.references Zhi-Pei Liang, & Lauterbur, P. C. (1994). An efficient method for dynamic magnetic resonance imaging. IEEE Transactions on Medical Imaging, 13(4), 677-686. doi:10.1109/42.363100 es_ES
dc.description.references Doyle, M., Walsh, E. G., Blackwell, G. G., & Pohost, G. M. (1995). Block Regional Interpolation Scheme for k-Space (BRISK): A Rapid Cardiac Imaging Technique. Magnetic Resonance in Medicine, 33(2), 163-170. doi:10.1002/mrm.1910330204 es_ES
dc.description.references Foo, T. K., Bernstein, M. A., Aisen, A. M., Hernandez, R. J., Collick, B. D., & Bernstein, T. (1995). Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology, 195(2), 471-478. doi:10.1148/radiology.195.2.7724769 es_ES
dc.description.references Fredrickson, J. O., & Pelc, N. J. (1996). Temporal resolution improvement in dynamic imaging. Magnetic Resonance in Medicine, 35(4), 621-625. doi:10.1002/mrm.1910350425 es_ES
dc.description.references Madore, B., Glover, G. H., & Pelc, N. J. (1999). Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magnetic Resonance in Medicine, 42(5), 813-828. doi:10.1002/(sici)1522-2594(199911)42:5<813::aid-mrm1>3.0.co;2-s es_ES
dc.description.references Sharif, B., Derbyshire, J. A., Faranesh, A. Z., & Bresler, Y. (2010). Patient-adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (PARADISE). Magnetic Resonance in Medicine, n/a-n/a. doi:10.1002/mrm.22444 es_ES
dc.description.references Tsao, J., Boesiger, P., & Pruessmann, K. P. (2003). k-t BLAST andk-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonance in Medicine, 50(5), 1031-1042. doi:10.1002/mrm.10611 es_ES
dc.description.references Malik, S. J., Schmitz, S., O’Regan, D., Larkman, D. J., & Hajnal, J. V. (2006). x-f choice: Reconstruction of undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced angiography. Magnetic Resonance in Medicine, 56(4), 811-823. doi:10.1002/mrm.21008 es_ES
dc.description.references Pruessmann, K. P. (2006). Encoding and reconstruction in parallel MRI. NMR in Biomedicine, 19(3), 288-299. doi:10.1002/nbm.1042 es_ES
dc.description.references M. Jacob D. Xu Z-P. Liang Optimal selection of phase encodings in parallel MR imaging 2004 es_ES
dc.description.references Hamilton, L. H., Fabregat, J. A., Moratal, D., Ramamurthy, S., Lerakis, S., Parks, W. J., … Brummer, M. E. (2010). «PINOT»: Time-resolved parallel magnetic resonance imaging with a reduced dynamic field of view. Magnetic Resonance in Medicine, 65(4), 1062-1074. doi:10.1002/mrm.22696 es_ES
dc.description.references Mifsud, C. J. (1963). Algorithm 154: combination in lexicographical order. Communications of the ACM, 6(3), 103. doi:10.1145/366274.366309 es_ES
dc.description.references Buckles, B. P., & Lybanon, M. (1977). Algorithm 515: Generation of a Vector from the Lexicographical Index [G6]. ACM Transactions on Mathematical Software, 3(2), 180-182. doi:10.1145/355732.355739 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem