- -

Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ultimo, Amelia es_ES
dc.contributor.author Giménez Morales, Cristina es_ES
dc.contributor.author BARTOVSKY, PAVEL es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Amoros del Toro, Pedro Jose es_ES
dc.contributor.author Bernardo, Ana R. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Jiménez Lara, Ana M. es_ES
dc.contributor.author Murguía, Jose R. es_ES
dc.date.accessioned 2016-04-06T10:08:23Z
dc.date.available 2016-04-06T10:08:23Z
dc.date.issued 2016-01-26
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/62279
dc.description.abstract The authors describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. The authors' results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles' mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent. es_ES
dc.description.sponsorship We thank the Spanish Government (projects SAF2010-21195 and MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. A.U. and C.G. are grateful to the Ministry of Education, Culture and Sport for their doctoral fellowships. We thank J. M. Cosgaya and M. J. Latasa for helpful discussions. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antitumor agents es_ES
dc.subject Breast carcinoma es_ES
dc.subject Drug delivery es_ES
dc.subject Mesoporous gated materials es_ES
dc.subject Polyinosinic polycytidylic acid es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201504629
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SAF2010-21195/ES/CHIP-SEQ PARA IDENTIFICAR LA RED TRANSCRIPCIONAL DIANA DE LOS RECEPTORES DE ACIDO RETINOICO EN CELULAS DE CANCER DE MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Ultimo, A.; Giménez Morales, C.; Bartovsky, P.; Aznar, E.; Sancenón Galarza, F.; Marcos Martínez, MD.; Amoros Del Toro, PJ.... (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal. 22(5):1582-1586. https://doi.org/10.1002/chem.201504629 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201504629 es_ES
dc.description.upvformatpinicio 1582 es_ES
dc.description.upvformatpfin 1586 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 299971 es_ES
dc.identifier.eissn 1521-3765
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87-108. doi:10.3322/caac.21262 es_ES
dc.description.references McGuire, A., Brown, J., Malone, C., McLaughlin, R., & Kerin, M. (2015). Effects of Age on the Detection and Management of Breast Cancer. Cancers, 7(2), 908-929. doi:10.3390/cancers7020815 es_ES
dc.description.references Stier, S., Maletzki, C., Klier, U., & Linnebacher, M. (2013). Combinations of TLR Ligands: A Promising Approach in Cancer Immunotherapy. Clinical and Developmental Immunology, 2013, 1-14. doi:10.1155/2013/271246 es_ES
dc.description.references Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Mayer, L., … Xiong, H. (2005). Toll-Like Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance. Cancer Research, 65(12), 5009-5014. doi:10.1158/0008-5472.can-05-0784 es_ES
dc.description.references Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells. The Journal of Immunology, 176(8), 4894-4901. doi:10.4049/jimmunol.176.8.4894 es_ES
dc.description.references Salaun, B., Zitvogel, L., Asselin-Paturel, C., Morel, Y., Chemin, K., Dubois, C., … Andre, F. (2011). TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer. Cancer Research, 71(5), 1607-1614. doi:10.1158/0008-5472.can-10-3490 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772 es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 es_ES
dc.description.references Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l es_ES
dc.description.references Liu, R., Liao, P., Liu, J., & Feng, P. (2011). Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release. Langmuir, 27(6), 3095-3099. doi:10.1021/la104973j es_ES
dc.description.references Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie International Edition, 46(9), 1455-1457. doi:10.1002/anie.200603404 es_ES
dc.description.references Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie, 119(9), 1477-1479. doi:10.1002/ange.200603404 es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756 es_ES
dc.description.references Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g es_ES
dc.description.references Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165 es_ES
dc.description.references Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d es_ES
dc.description.references Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d es_ES
dc.description.references Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085 es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 es_ES
dc.description.references Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827 es_ES
dc.description.references Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827 es_ES
dc.description.references Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161e es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Knežević, N. Ž., & Durand, J.-O. (2015). Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 80(1), 26-36. doi:10.1002/cplu.201402369 es_ES
dc.description.references Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751-760. doi:10.1038/nnano.2007.387 es_ES
dc.description.references Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591 es_ES
dc.description.references Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Xie, M., Shi, H., Li, Z., Shen, H., Ma, K., Li, B., … Jin, Y. (2013). A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids and Surfaces B: Biointerfaces, 110, 138-147. doi:10.1016/j.colsurfb.2013.04.009 es_ES
dc.description.references Wang, Y., Shi, W., Song, W., Wang, L., Liu, X., Chen, J., & Huang, R. (2012). Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. Journal of Materials Chemistry, 22(29), 14608. doi:10.1039/c2jm32398b es_ES
dc.description.references Ferris, D. P., Lu, J., Gothard, C., Yanes, R., Thomas, C. R., Olsen, J.-C., … Zink, J. I. (2011). Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 7(13), 1816-1826. doi:10.1002/smll.201002300 es_ES
dc.description.references Tsai, C.-P., Chen, C.-Y., Hung, Y., Chang, F.-H., & Mou, C.-Y. (2009). Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 19(32), 5737. doi:10.1039/b905158a es_ES
dc.description.references Bernardo, A. R., Cosgaya, J. M., Aranda, A., & Jiménez-Lara, A. M. (2013). Synergy between RA and TLR3 promotes type I IFN-dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death & Disease, 4(1), e479-e479. doi:10.1038/cddis.2013.5 es_ES
dc.description.references Patel, S., Sprung, A. U., Keller, B. A., Heaton, V. J., & Fisher, L. M. (1997). Identification of Yeast DNA Topoisomerase II Mutants Resistant to the Antitumor Drug Doxorubicin: Implications for the Mechanisms of Doxorubicin Action and Cytotoxicity. Molecular Pharmacology, 52(4), 658-666. doi:10.1124/mol.52.4.658 es_ES
dc.description.references Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase II  Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Research, 67(18), 8839-8846. doi:10.1158/0008-5472.can-07-1649 es_ES
dc.description.references Galluzzi, L., Vacchelli, E., Eggermont, A., Fridman, W. H., Galon, J., Sautès-Fridman, C., … Kroemer, G. (2012). Trial Watch. OncoImmunology, 1(5), 699-739. doi:10.4161/onci.20696 es_ES
dc.description.references Paone, A., Starace, D., Galli, R., Padula, F., De Cesaris, P., Filippini, A., … Riccioli, A. (2008). Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC- -dependent mechanism. Carcinogenesis, 29(7), 1334-1342. doi:10.1093/carcin/bgn149 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem